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Abstract—The Internet of Things (IoT) technology has ex-
panded network space by inter-connected devices, which has been
widely used in various fields, such as environmental monitoring,
object tracking, risk warning, etc. Due to insufficient computing
capacity, limited battery life, and unreliable communication
environment in IoT, Unmanned Aerial Vehicle (UAV) -enabled
edge computing has been recently utilized to provide enhanced
coverage and efficient computational support in the scenarios
with sparse or unreliable ground infrastructure, such as disaster
rescue, emergency response, military fields, etc. However, UAV-
enabled edge computing faces many challenges, such as low
offloading efficiency, high energy consumption, high complexity,
etc. In this paper, a distributed computation offloading scheme is
proposed to provide computational support to large-scale IoT
nodes and optimize the energy efficiency of multiple UAVs.
Firstly, to provide accurate and efficient computational support,
a real-time intelligent positioning algorithm is designed to obtain
the precise location information of IoT nodes. Then, a distributed
computation offloading and path planning algorithm is presented,
which jointly optimizes the computation offloading of large-scale
IoT nodes and trajectory planning of multiple UAVs to reduce
the energy consumption of UAVs. Furthermore, we develop a
closed-form theoretical analysis model to demonstrate that the
algorithm enables a performance guarantee related to energy
efficiency. Finally, extensive simulations have been conducted and
show that the proposed scheme can greatly improve the system
utility and energy efficiency.

Index Terms—Edge computing, Computation offloading, Tra-
jectory optimization, Internet of Things.
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I. INTRODUCTION

DRIVEN by the Internet of Things (IoT) technology, more
and more devices have connected to the Internet to

support various IoT applications, such as environmental mon-
itoring, object tracking, risk warning, etc [1]. Cisco estimates
that 12.3 billion mobile devices will connect to the Internet
by 2022, forming a huge network [2]. The expansion of IoT
will result in a substantial increasing number of task requests
and a large volume of data, which imposes great pressure on
the processing capacity of the existing IoT network [3], [4].

On the one hand, IoT nodes face the issues of insufficient
computing capacity, limited battery life, poor computing com-
patibility, etc. For example, some IoT nodes may need to exe-
cute tasks beyond their computing capacities, and the life spans
of the IoT nodes deployed in the outdoor environment are
greatly limited by the carried batteries, which forces the IoT
nodes to offload these tasks for extending their life spans. On
the other hand, most of these tasks are computation-intensive
and delay-sensitive. Offloading these tasks to a cloud center
may face huge challenges [5], [6]. For example, transmitting
all task data to the cloud center for processing will consume
a lot of communication resources (backhaul links usage) and
bring a high end-to-end delay, which greatly wastes network
resources and degrades the quality of IoT services [7].

To handle large volume and widely distributed data, the
emerging Mobile Edge Computing (MEC) extends the com-
puting and storage capacities to the network edge, which
reduces the non-negligible delay caused by data transmissions
[8]–[14]. Furthermore, Unmanned Aerial Vehicle-mounted
Edge Servers (UAV-ES) have been utilized as promising
approaches to provide enhanced coverage and efficient compu-
tational support in the areas with sparse or unreliable ground
infrastructure, such as disaster rescue, emergency response,
and military fields [15], [16]. For example, some IoT nodes
are deployed in unattended or even hostile environments to
execute tasks including detecting dangerous terrain, moni-
toring natural resources, executing danger warning, etc [17],
[18]. In these scenarios, the ground infrastructure is sparsely
distributed, and the computational support based on fixed base
stations is infeasible. Therefore, UAV-enabled edge computing
has emerged as a promising technique to provide dynamic and
efficient computational support for IoT nodes, which improves
the system flexibility and extends the operational life of the
system [19], [20].
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However, due to the limited onboard power of UAVs and
the mobility of IoT nodes, UAV-enabled edge computing faces
many challenges, such as low offloading efficiency, high en-
ergy consumption, high complexity, etc. First, IoT nodes may
need to constantly move to execute predetermined tasks, such
as object tracking, and many low-cost IoT nodes cannot afford
the cost of global navigation satellite systems receivers [21],
[22]. To reduce the cost of IoT nodes and provide efficient
computational support in complex terrain environments, it is
necessary to build an intelligent positioning solution to obtain
precise location information of IoT nodes. Second, due to the
widespread distribution of large-scale IoT nodes, a single UAV
can hardly cope with a large number of task requests. Fur-
thermore, due to the lack of global information in multi-UAV-
enabled edge computing, traditional centralized optimization
solutions are not applicable [23]. Therefore, based on the local
information, how to make computation offloading decisions
for large-scale IoT nodes, and how to plan multiple UAV
trajectories to improve the effectiveness of the system are still
open issues.

To address the above issues, we study the online distributed
computation offloading problem in the scenario of multiple
UAVs and large-scale IoT nodes taking into account the mobil-
ity of IoT nodes and time-varying computing demands. First,
we design a Three-dimensional Space Intelligent Positioning
(TSIP) algorithm to obtain the mobility information of IoT
nodes. Then, to cope with the complexity brought by large-
scale IoT nodes and multiple UAVs, we propose a Distributed
Computation Offloading and Path planning (DCOP) algorithm
to perform computation offloading of IoT nodes and trajectory
optimization of multiple UAVs. Our goal is to maximize the
system utility and minimize the UAVs energy consumption.
The contributions of this paper are four-fold, which are sum-
marized as follows.

1) An intelligent positioning algorithm TSIP is designed to
obtain the real-time location information of IoT nodes,
which is utilized to assist in computation offloading
and trajectory planning. Furthermore, we analyze the
positioning error of TSIP in the process of anchor node
selection.

2) A distributed computation offloading algorithm DCOP is
proposed, which performs the computing offloading of
IoT nodes and path planning of UAVs. The maximum
utility coverage set for each UAV is constructed through
communications and consensus agreements among IoT
nodes to improve energy efficiency.

3) We analyze the performance of DCOP based on the
submodularity of the gain function, and prove that DCOP
enables a performance guarantee related to energy effi-
ciency through a closed-form theoretical analysis.

4) Finally, extensive simulations are conducted to evaluate
the performance of our proposed algorithm, which show
that our algorithm effectively improves the system utility
and significantly reduces the energy consumption of
UAVs.

The rest of the paper is organized as follows. In Section II,
we briefly review the related works. We introduce the system

model and give the problem formulation in Section III. In
Section IV, TSIP and DCOP are proposed, and a closed-form
theoretical model is developed to analyze the performance
of DCOP in Section V. We evaluate the performance of the
proposed algorithms through extensive simulations in Section
VI, followed by concluding remarks in Section VII.

II. RELATED WORK

In recent years, computation offloading in MEC has at-
tracted widespread attention from researchers, and some pro-
posals have been presented for various research fields. Specif-
ically, according to the mobility of users and edge servers,
the related works can be divided into three categories: i)
Static optimization without considering mobility [24]–[28]; ii)
Considering the mobility of users [29]–[33]; iii) Considering
the mobility of edge servers [16], [34]–[37]. In MEC, mobile
edge servers (e.g., vehicle-mounted edge servers or UAV-ES)
may move to users and proactively provide computational
support.

The optimization researches of computation offloading in
MEC under static situations have become more and more
mature, which mainly include computation offloading and
joint optimization of computation offloading and service de-
ployment [24]–[27]. For instance, Li et al. [24] proposed an
incentive-aware offloading framework to reduce cost by of-
floading jobs to MEC servers. Poularakis et al. [27] studied the
joint optimization of request routing and service deployment in
dense MEC networks to minimize the load of the centralized
cloud. In addition, some related works investigated user mobil-
ity and proposed solutions for computation offloading in MEC
networks. Specifically, Ouyang et al. [32] proposed a mobility-
aware framework based on Lyapunov optimization, achieving
a balance between system performance and operating cost for
MEC networks. Considering the mobility of users, Wang et al.
[33] presented a dynamic computation coordination method to
minimize the overall service delay. These works aim to offload
computing tasks to static edge servers that are permanently
deployed, without taking into account some scenarios with
sparse or unreliable ground infrastructure.

Due to the limitations of static edge mechanisms in en-
vironments where the ground communication infrastructure
is sparsely deployed and the communications are unreliable,
the mobile edge mechanism has become an urgent need and
attracted considerable attention from researchers. In order
to provide computational support to end users, Liu et al.
[34] studied the joint optimization problem of path planning
and resources allocation in vehicle-mounted edge computing,
which was formulated as a mixed integer nonlinear program.
They proposed an algorithm based on piecewise linear ap-
proximation and linear relaxation to solve this problem, and
improved the task completion rate of IoT nodes. In the UAV-
ES situation, Guo et al. [35] studied the joint optimization of
computation offloading and trajectory of one UAV in MEC
to minimize the total delay of all users. Jeong et al. [36]
jointly optimized the bit allocation for communications and
UAV trajectory to reduce a UAV energy consumption. Another
related work [37] focused on user association, user uploading
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Fig. 1. The architecture of distributed computation offloading and trajectory optimization in multi-UAV-enabled edge computing for Internet of Things.

power, and UAV trajectory to maximize the total bits offloaded
to a UAV from all users. In [16], Li et al. studied the issues
of UAV trajectory, users transmit power and computation load
allocation to improve the energy efficiency of a UAV. The
above-mentioned approaches assume that the locations of users
are fixed or pre-known, and they have not fully taken into
account the complexity of the existing multi-UAV system [16],
[37].

Although some UAV-assisted MEC solutions have been
proposed, there are still some open issues to be addressed.
Specifically, most related works assume that the locations of
users are fixed or pre-known, and have not fully considered
how to obtain users’ locations accurately in different time
slots. Some works study the optimization of UAV-assisted
MEC networks based on the global information that is difficult
to be obtained. In addition, they mainly focus on single UAV,
which is not suitable for large-scale IoT scenarios. In a com-
plex UAVs system, optimization research on multiple UAVs
considering time-varying computing demand and user mobility
needs further investigation. This paper proposes a real-time
positioning algorithm TSIP in three-dimensional space to
obtain the location information of IoT nodes, and designs a
distributed computation offloading algorithm DCOP based on
local information to optimize system energy efficiency.

III. SYSTEM MODEL

A. System Architecture

The system architecture is shown in Fig. 1, which in-
cludes the ground layer and the edge layer. The edge layer
contains multiple UAVs that constantly move and provide
computational support to IoT nodes nearby. In the ground
layer, multiple fixed anchor nodes for IoT node positioning
are deployed in the three-dimensional space. According to dif-
ferent task demands (such as threat detection, object tracking,
etc.), IoT nodes constantly move and generate task requests.
Due to the computing capacity and power constraints of IoT
nodes, task requests need to be offloaded to the UAVs for
execution as much as possible. Otherwise, they can only be

executed locally. Therefore, we need to jointly determine the
computation offloading decision of each IoT node and the
trajectory of each UAV to maximize the energy efficiency of
the system.

UAV is denoted by vj ∈ V , indexed by j ∈ {1, 2, 3, ..., |V |},
anchor node is denoted by rm ∈ R, indexed by m ∈
{1, 2, 3, ..., |R|}, and IoT node is denoted by ui ∈ U , indexed
by i ∈ {1, 2, 3, ..., |U |}. In order to analyze the dynamic
changes of the system, we model the system based on a
quasi-static network scenario [34], [38], [39], and discretize
the system time into multiple time slots, t ∈ T , indexed
by {1, 2, 3, ..., |T |}. The length of each time slot is ς . The
notations and variables used in our formulations are shown in
Table I.

B. Computation Model
Denote the computation task model as ski (t) =

(ρki (t), σki (t), wki (t)), indexed by k ∈ {1, 2, · · · , |K|}, which
respectively represent task type, task size of input-data (in
bits), and computational intensity of the task, that is the
required CPU frequency (in CPU cycles per bit). ski (t) ∈ S(t),
where S(t) is the set of tasks in time slot t. Denote the
offloading decision variable of IoT node ui in time slot t
as a binary variable xij(t), and xij(t) = 1 means that the
node ui offloads the task to UAV vj for execution, otherwise
xij(t) = 0. If all xij(t) = 0,∀vj ∈ V , then we set xiφ(t) = 1
to indicate that the task is executed locally.

Each edge server is equipped with multiple CPU cores.
It can provide parallel computation for multiple IoT tasks
simultaneously by processor sharing [40]. Therefore, if UAV
vj moves to the location of IoT node ui, it can provide
computational support to a user set Πij which is centered on
ui with radius dj , where dj is the coverage radius of vj . Note
that the maximum CPU cycle frequency for UAV vj to perform
tasks is fmax

j .

C. Communication Model
Since the communication efficiency is closely related to

the locations of IoT nodes and UAVs, we consider both the
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mobility of IoT nodes and UAVs in the research architec-
ture. To represent the locations of IoT nodes and UAVs,
we build a three-dimensional cartesian coordinate system.
The location of IoT node ui in time slot t is pi(t) =
(ui,x(t), ui,y(t), ui,z(t)), and the fixed location of anchor node
rm is pm = (rm,x, rm,y, rm,z). Similarly, the location of UAV
vj in time slot t is pj(t) = (vj,x(t), vj,y(t), vj,h(t)). Therefore,
the average velocity vector of vj in time slot t is expressed as
[16]

vj(t) =
pj(t)− pj(t− 1)

ς
. (1)

Similarly, the average acceleration vector of vj in time slot t
is calculated as

aj(t) =
vj(t)− vj(t− 1)

ς
. (2)

And the path Pj of vj can be denoted as

Pj = {pj(t) |t ∈ T }. (3)

The channel between UAV and IoT node is considered as
line-of-sight (LoS) [37], [41]. According to a free-space path
loss model [16], [42], the channel power gain between vj and
ui in time slot t is calculated by

hij(t) =
ρ0

‖pj(t)− pi(t)‖2
, (4)

where ‖∗‖ is the notation representing the Euclidean norm, ρ0

is the received channel power gain at the reference distance
d0 = 1 m between vj and ui. In non-orthogonal channel
access model [16], the transmission rate of IoT node ui in
communication with UAV vj in time slot t is calculated by
[43], [44]

Rij(t) = W log2

[
1 +

βihij(t)∑
i′ 6=i βi′hi′j(t) + σ2

]
, (5)

where W is the bandwidth, βi is the transmission power of ui,∑
i′ 6=i βi′hi′j(t) is the signal interference, and σ2 is the noise

power. Therefore, in time slot t, the size of data offloaded
from ui to vj is given by

δkij(t) = min
[
xij(t)Rij(t)ς, σ

k
i (t)

]
. (6)

The size of data offloaded is σki (t) if the task data can be
entirely offloaded in time slot t. Otherwise, (6) calculates the
amount of task data that can be offloaded.

D. Energy Consumption Model

1) UAV Energy Consumption Model: For UAV propulsion
energy consumption, we adopt an improved UAV propulsion
energy consumption model [36], [45]. The propulsion energy
consumption of UAV vj in time slot t is related to its instan-
taneous acceleration and velocity, which can be calculated as

efj (t) = η1‖vj(t)‖3 +
η2

‖vj(t)‖
(1 +

‖aj(t)‖2

g2
), (7)

where η1 and η2 are fixed parameters mainly related to UAV’s
weight and wing areas, and g represents the gravitational
acceleration [16], [36], [45].

TABLE I
COMMONLY USED NOTATIONS AND VARIABLES

Notation Description

vj ,V UAV and the set of UAVs
ui,U IoT node and the set of IoT nodes
rm,R Anchor node and the set of anchor nodes
t,T ,ς Time slot, the set of time slots, and the length of each time slot
ski (t),S(t) Computation task of ui and the set of tasks in time slot t
σki (t) Task size of input-data of ski
wki (t) Task computational intensity of ski
xij(t) Binary variable indicates whether the task ski of IoT node ui is

offloaded to UAV vj in time slot t
xiφ(t) Binary variable indicates whether the task ski of IoT node ui is

executed locally in time slot t
dj Coverage radius of UAV vj
fmax
j Maximum CPU cycle frequency of UAV vj
$kij(t) Execution frequency of task ski
pi(t) Location of IoT node ui in time slot t
pj(t) Location of UAV vj in time slot t
pm Location of anchor node rm
vj(t),aj(t) Velocity and acceleration of UAV vj in time slot t
Pj Path planning of UAV vj
Rij(t) Transmission rate of IoT node ui offloading task to UAV vj
efj (t) Propulsion energy consumption of UAV vj in time slot t
ekij(t) Computational energy consumption of task ski
em(t) Energy of anchor node rm in time slot t
δkij(t) Size of data offloaded from ui to vj in time slot t
<, ê Communication range and energy threshold of anchor node
ϑi, Θi Candidate positioning unit and the set of positioning unit of IoT node

ui
ξkij Scoring function of UAV vj processing the task ski
Ũj(t) User set in the coverage of UAV vj in time slot t
Ũij(t) User set in the coverage of UAV vj centered on ui in time slot t
Πmax
j (t) Maximum utility coverage set of vj in time slot t

Πij(t) Utility coverage set of vj centered on ui in time slot t

The computational energy consumption of a UAV is mainly
related to the amount of data offloaded and the frequency
of actual execution. In time slot t, the computational energy
consumption of vj in executing the task ski for ui can be
calculated as

ekij(t) = κjδ
k
ij(t)w

k
i (t)($k

ij(t))
2, (8)

where κj is the effective switched capacitance of UAV vj

processor [36], [37], and $k
ij(t) =

δkij(t)w
k
i (t)

ς is the actual
CPU execution frequency of task ski . Since the energy con-
sumption of a UAV caused by data transmissions is smaller
than those of flight and computation, we ignore the UAV
energy consumption due to communications [43].

2) Anchor Energy Consumption Model: We define the
initial battery energy of anchor node rm as Em, and the battery
energy at the beginning of time slot t is expressed as em(t),
where em(1) = Em. Therefore, the energy of anchor node rm
in time slot t+ 1 is expressed as

em(t+ 1) = em(t)−
A∑
a=1

eam(t), (9)

where A represents the number of times that anchor node rm

is selected as the positioning unit in time slot t, and
A∑
a=1

eam(t)

is its total energy consumed in positioning IoT nodes in time
slot t.
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E. Problem Formulation

UAVs providing computational support to IoT nodes can
bring utility to the system. Meanwhile, the movement and task
execution of a UAV will incur energy cost. Our goal is to max-
imize the system utility and minimize the energy consumption
cost. This process involves two essential variables, including
IoT node offloading decision xij(t) and UAV path planning
pj(t). We define the energy efficiency of UAV vj as the ratio
of the amount of task data offloaded to the consumed energy,
which can be denoted as

zj(t) =

∑
ui∈U

δkij(xij(t))

efj (pj(t)) +
∑
ui∈U

ekij(t)
, (10)

where δkij is the amount of data offloaded from ui to vj and
represents the system utility of vj processing the task ski for ui.
The amount of offloaded data indicates the execution efficiency
of UAVs providing computational support for IoT nodes. efj
is the propulsion energy consumption of vj , and ekij is the
computational energy consumption.

Offloading decision variable xij needs to satisfy the follow-
ing constraint

xij(t) ∈ {0, 1},∀ski (t) ∈ S(t), vj ∈ V. (11)

The task data of an IoT node can only be offloaded to one
UAV for execution, and we have∑

vj∈V
xij(t) ≤ 1,∀ski (t) ∈ S(t). (12)

For UAV vj , the maximum computational resource constraint
needs to be satisfied, that is∑

ui∈U
xij(t)$

k
ij(t) ≤ fmax

j ,∀vj ∈ V. (13)

Denote Ũj(t) as the user set in the coverage of UAV vj that
is located at the position pj(t) in time slot t. If ui does not
belong to Ũj(t), its tasks cannot be offloaded to vj , that is,
the offloading decision satisfies

xij(t) = 0,∀ski (t) ∈ S(t), vj ∈ V, ui(t) /∈ Ũj(t). (14)

In the process of positioning, the positioning unit needs to be
constructed by selecting multiple anchor nodes. The anchor
nodes in the positioning unit need to satisfy

dim ≤ <,∀rm ∈ R, (15)

em ≥ ê,∀rm ∈ R, (16)

where dim is the distance from rm to ui, < and ê are
the communication range and energy threshold constraints,
respectively.

Therefore, our optimization objective is to maximize the
total energy efficiency of the system that is expressed as

max
{xij(t)},{pj(t)}

∑
t∈T

∑
vj∈V

zj(t),

s.t. (11) - (16) .
(17)

There are two key issues to be solved in the afore-mentioned

Fig. 2. Illustration of positioning error analysis.

model. On the one hand, due to the uncertainty of IoT nodes
mobility, it is necessary to design a real-time positioning algo-
rithm to obtain the position information of IoT nodes in time
to provide accurate and efficient computational support. On the
other hand, the joint decisions of computation offloading for
distributed large-scale IoT nodes and path planning for multi-
ple UAVs have high computational complexity. The system
lacks centralized management, and traditional optimization
solutions based on global information are not applicable. In
order to solve the above problems, we first design a positioning
algorithm TSIP, and then propose a distributed edge computing
algorithm DCOP, which will be introduced in detail in Section
IV.

IV. MULTI-UAV-ENABLED DISTRIBUTED EDGE
COMPUTING

Taking into account the mobility of IoT nodes, we first
propose a positioning algorithm TSIP, which reasonably con-
structs the positioning units and corrects the locations of
IoT nodes according to the proposed anchor node selection
theorem in Section IV-A. Then, to deal with the complexity
of the system caused by multiple IoT nodes and UAVs, we
propose a distributed algorithm DCOP to construct the utility
coverage set for UAVs and provide computational support to
multiple IoT nodes to improve the energy efficiency of the
system.

A. Three-dimensional Space Intelligent Positioning

In the three-dimensional space, the location coordinates of
IoT node ui can be calculated by introducing 4 non-coplanar
anchor nodes and measuring the distance dim from the anchor
node rm to IoT node ui. However, in actual situations, there
may be errors in the distance measurements, which affect the
accuracy of positioning.

In order to enhance the positioning accuracy of IoT nodes,
we need to choose more reliable anchor nodes in constructing
the positioning units. Our proposed Theorem 1 and Corollary 1
provide theoretical guidance for constructing positioning units.
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Algorithm 1: Three-dimensional space intelligent po-
sitioning

Input: R = {r1, r2, ..., rm, ...}, rm =
{
pm, em, d

i
m

}
,

<, θ̂, ε̂, ê
1 Get the task request S(t) and the distance information
dim in time slot t;

2 for ski (t) ∈ S(t) do
3 if dim ≤ < and em ≥ ê then
4 Ψi ← Ψi ∪ {rm};
5 end
6 do
7 Select candidate positioning units

ϑi = (rm, rl, rh, rg) from Ψi;
8 Solve the angle θ among any two anchor nodes

and IoT node;
9 if |θ − 109.4736◦| < θ̂ then

10 Θi ← Θi ∪ ϑi;
11 pi(n) = (ui,x, ui,y, ui,z);

12 p̄i(n) =
∑
ϑ∈Θi

pi(n)

|Θi| ;
13 end
14 while ‖p̄i(n)− p̄i(n− 1)‖ ≤ ε̂;
15 pi(t) = p̄i(n);
16 end

17 em(t+ 1) = em(t)−
A∑
a=1

eam(t);

Output: pi(t) = (ui,x, ui,y, ui,z)

Theorem 1 Anchor Node Selection Theorem: When the
angle between any two anchor nodes in the positioning unit
and an IoT node is equal to 109.4736◦, the positioning solution
achieves the minimum error.

Proof. In the process of positioning, denote the measurement
error as ε, then the estimated distance interval of 4 anchor
nodes (dim − ε, dim + ε) can be enclosed in a space area
surrounded by eight spherical surfaces, and the volume of
the spatial domain can be as the positioning error interval of
the IoT node. The spherical surfaces of the spatial domain
are approximated as planes, forming an octahedron, as shown
in Fig. 2. Denote ∠rlOrm as θ, and ∠ABC as α, then
∠OEH is π−θ

2 . According to the geometric relationship and
the symmetry of the octahedron, the volume can be calculated
by

V =
2

3
S · h =

8

3

ε3

cos2(π−θ2 ) sin(π−θ2 ) sinα
, (18)

where S is the area of the quadrilateral ABCD and equals
to 4ε2

cos2(
π−θ

2 ) sinα
, and h is equal to ε

sin(
π−θ

2 )
. In (18), to

get the minimum value of V , sinα gets the maximum value
of 1 when α=π2 . On the other hand, for θ (0 < θ < π),
let f(θ) = cos2(π−θ2 ) sin(π−θ2 ). We get its extreme point
by derivation, and according to the domain of definition and
properties of second derivative, when sin(π−θ2 )=

√
3

3 , that is,
θ = π−2 arcsin(

√
3

3 ) ≈ 109.4736◦, the volume of octahedron
reaches the minimum value Vmin = 4

√
3ε2. It means that the

Algorithm 2: Construction of utility coverage set
Input: S(t), fmax

j

1 Initialize Πij(t), and get the set of covered users Ũij ;
2 do
3 Get the score of decision xnij(t) by ξk,nij (t);
4 Select ui when arg maxui∈Ũij\Πnij(t)

ξk,nij (t) 1
$nij(t)

;

5 Πn
ij(t)← Πn

ij(t)
⋃
ui;

6 (X∗(t), P ∗(t))←
(X∗(t), P ∗(t))

⋃
(xij

∗(t), pj
∗(t));

7 Sn(t)← Sn−1(t)\ski (t);
8 fj(t) = fj(t) +$n

ij(t);
9 while fj(t) ≤ fmax

j and Ũij\Πn
ij(t) 6= φ;

10 ξnj (Πn
ij(t)) =

∑
ui∈Πnij(t)

ξk,nij (t);
11 for ui ∈ U\Πn

ij(t) do
12 ξk,nij (xnij(t)) = 0;
13 end

Output: ξnj (Πn
ij(t)), Πn

ij(t), (X∗(t), P ∗(t))

corresponding positioning error reaches the minimum value.
Therefore, Theorem 1 is proved.

Corollary 1: In the process of three-dimensional space
positioning, if the number of available positioning anchor
nodes is more than 4, we can select any two anchor nodes
with the angle between them and the IoT node approaching
109.4736◦ to construct the positioning unit, which can reduce
positioning error.

Then we propose TSIP to obtain the location information
of IoT nodes and the pseudo code is shown in Algorithm 1.
Denote the set of anchor nodes as R = {r1, r2, ..., rm, ...},
where each anchor node contains location, energy, and distance
information, denoted as rm =

{
pm, em, d

i
m

}
. First, we select

the available anchor nodes that satisfy the constraints of (15)
and (16), and add them to the set of available anchor nodes
Ψi. Our goal is to use anchor nodes with more residual
energy to extend the service life of the system. TSIP randomly
selects available anchor nodes from Ψi and constructs the
positioning unit ϑi = (rm, rl, rh, rg) through the anchor node
selection theorem, then adds them to the set of positioning
unit Θi. And θ̂ is the threshold of the difference between the
actual angle and the optimal angle. Next, TSIP calculates the
position coordinate of IoT node pi(n) = (ui,x, ui,y, ui,z) by
the positioning unit. Furthermore, since there may be a large
error in the positioning by one positioning unit, the position
coordinate pi(n) is corrected by the average value of multiple
positionings. When the average error of the two positionings
is less than the threshold ε̂, the algorithm tends to converge
and exits the positioning process. In addition, Theorem 1
provides a theoretical guarantee for our positioning algorithm
in reducing positioning error.

B. Distributed Computation Offloading and Path Planning

The proposed DCOP mainly solves two key issues: of-
floading decision xij of IoT node ui and path planning pj
of UAV vj , i ∈ {1, 2, 3, ..., |U |} and j ∈ {1, 2, 3, ..., |V |}.
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Algorithm 3: Distributed computation offloading and
path planning
Input: pj(t− 1), pi(t), S(t), fmax

j

1 do
2 if ski (t) ∈ S(t) then
3 if n 6= 0 then
4 ξk,nij (t) = ξk,n−1

ij (t);
5 end
6 do
7 ξ̃kij(t) = ξk,nij (t);
8 if ξk,n−1

ij (t) 6= 0 and ξk,nij (t) = 0 then
9 Update offloading decision xij(t) to

maximize energy efficiency,
ξk,nij (t) = gain(ui,Π

n
ij(t), vj);

10 end
11 if xnij(t) 6= xn−1

ij (t) then
12 send(ui, x

n
ij(t));

13 end
14 recieve(ui′ , x

n
i′j(t));

15 Construct utility coverage set with
Algorithm 2;

16 while ξ̃kij(t) 6= ξk,nij (t);
17 end
18 else
19 recieve(ui′ , x

n
i′j(t));

20 Construct utility coverage set with Algorithm 2;
21 end
22 if ∃ui ∈ U , ∃ξnj (Πn

ij(t)) 6= ξn−1
j (Πn−1

ij (t)) then
23 send(ui,Π

n
ij(t));

24 end
25 receive(ui′ ,Π

n
i′j(t)), ∀ui′ ∈ Ũi;

26 Consensus agreement(ui, Πn
ij(t)), ∀ui ∈ Ũi,

ξnj (Πmax
j (t))← max

{
ξnj (Πn

ij(t)), ξ
n
j (Πn

i′j(t))
}

;
27 while ∃Πn

ij(t) 6= Πn
i′j(t);

Output: (X∗(t), P ∗(t)), Πmax
j (t)

That is, how to make decisions of pj and xij to provide
computational support to more IoT nodes, and minimize UAV
energy consumption. Denote Ũij(t) as the user set in the
coverage of UAV vj centered on IoT node ui in time slot
t. Due to processor sharing of UAV-ES, a UAV can process
task requests from multiple IoT nodes simultaneously [40].
Therefore, we give the following definitions.

Definition 1 Utility Coverage Set: The set where user tasks
can be offloaded to UAV vj from Ũij(t) is the utility coverage
set of vj centered on ui, expressed as Πij(t).

The main idea of DCOP is that each IoT node makes
offloading decision by constructing a utility coverage set
centered on itself based on local information. This solves
the problem of the lack of global information in multi-
UAV-enabled edge computing. Specifically, each IoT node
sequentially adds users to the utility coverage set according to
the ratio of energy efficiency to cost to maximize the overall
energy efficiency of the system. Then each UAV’s trajectory is
planned according to the decision of optimal energy efficiency

of the system. As we mentioned, utility coverage set Πij(t)
means that the tasks of users in this set can be offloaded to vj
under the constraint of UAV resources if vj flies to the location
of ui. Since there exist time-varying offloading requests from
IoT nodes in the UAV-enabled edge computing system, we
define the gain function ξkij of the system energy efficiency
according to the law of diminishing marginal utility, which
is more realistic than the simple linear utility function and
used in cloud services such as Software as a Service (SAAS)
[46]. Specifically, the gain function of adding ui to the utility
coverage set of vj is defined as

ξkij(t) = gain(ui,Πij(t), vj)

= min
u∈Πij

{
δkij(xij(t))

efj (pj(t)) + ekij(t)
,Luij(t)

}
,

(19)

where u ∈ Πij means any user that has been added to the
utility coverage set, and the gain function is related to energy
efficiency. We introduce an auxiliary variable Luij in (19) and
it is defined as

Luij(t) =


+∞, if ui select vj at the first time,

$n
ij(t)

ξkuj(t)

$n
uj(t)

, otherwise.
(20)

where
ξkuj(t)

$nuj(t)
represents the ratio of user u’s gain to resource

cost. In (20), the auxiliary variable ensures that the gain of the
IoT node ui added to the utility coverage set can not exceed
the gain of any previously added IoT node, thus ensuring the
submodularity of the gain function.

In general, the energy consumption of a UAV moving to
the navigation target location of any IoT nodes in the utility
coverage set Πij(t) is approximately equal. Therefore, the IoT
node’s own energy efficiency is unchanged when constructing
the utility coverage set. Based on the above gain function, we
calculate the total gain function of Πij(t) for UAV vj by

ξj(Πij(t))=
∑

ui∈Πij(t)

ξkij(t). (21)

Next, we give the submodularity of the gain function, which
is shown in Lemma 1.

Lemma 1 Submodularity of Gain Function: The total gain
function of UAV vj , that is ξj(Πij(t)), is submodular with
respect to user set Πij(t).

Proof. Suppose Π′ ⊂ Π′′ ⊂ U , ui /∈ Π′′, and ui ∈ U ,
according to the definition of the gain function, we have

min
u∈Π′′

{
$n
ij(t)

ξk,nuj (t)

$n
uj(t)

}
≤ min
u∈Π′

{
$n
ij(t)

ξk,nuj (t)

$n
uj(t)

}
. (22)

Based on (19), (20) and (22), we have

gain(ui,Π
′′, vj) ≤ gain(ui,Π

′, vj). (23)

For the total gain of each UAV, according to the law of
diminishing marginal utility, we have

ξj(Π
′′ + ui)− ξj(Π′′)=gain(ui,Π

′′, vj)

≤ gain(ui,Π
′, vj)=ξj(Π

′ + ui)− ξj(Π′),
(24)
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where Π′′ + ui means adding ui to the set Π′′. Therefore,
according to the definition of submodular function [9], [47],
[48], it can prove that the total utility function of each UAV
is the submodular function with respect to user set.

Definition 2 Maximum Utility Coverage Set: The set cor-
responding to the maximum total gain of vj , that is, the total
gain is the maximum value in (21) for vj , is defined as the
maximum utility coverage set of vj , expressed as Πmax

j (t).
If ui is the central user of Πmax

j (t), which means vj flying
to its location (horizontal coordinate) can bring the maximum
energy efficiency. Note that each user can be self-centered
to build a utility coverage set for a UAV, but the selection
and maintenance processes of the maximum utility coverage
set require communications and consensus agreements among
IoT nodes.

The process of constructing the utility coverage set for each
UAV is shown in Algorithm 2, where n is the iteration rounds
for users to update gain ξkij(t), that is, ξk,nij (t) represents
the gain in the n-th iteration, and $n

ij(t) represents the
corresponding resource cost. Specifically, Algorithm 2 gets
the score of decision xnij(t) by ξk,nij (t), and considers the
energy efficiency of data offloading and the cost of computing
resource consumption by sequentially adding users to the
utility coverage set according to the ratio of energy efficiency
to cost under the constraint of computing resource fmaxj .
Then Algorithm 2 updates the computation offloading and path
planning decision set (X∗(t), P ∗(t)). Furthermore, Algorithm
2 updates the task set and the occupied resources of UAV vj .
Πn
ij(t) represents the utility coverage set of vj centered on ui

in the n-th iteration, and ξnj (Πn
ij(t)) is the total gain of the

utility coverage set of vj . The gain of users that are not added
to the coverage set is set to 0.

Based on the submodularity of the gain function and the
constructed utility coverage set in Algorithm 2, DCOP can
make computation offloading and path planning decisions
to improve the total energy efficiency of the system. The
pseudo code of DCOP is shown in Algorithm 3. DCOP
mainly consists of three steps: i) Obtaining the offloading
decisions according to the gain function; ii) Constructing the
utility coverage set based on partial enumeration and greedy
idea [49]; and iii) Updating and maintaining the maximum
utility coverage set of the system through communications
and consensus agreements. First, user ui with tasks makes
the offloading decision xij(t) to maximize its own energy
efficiency and scores decision xij(t). Specifically, the gain
function is used as the scoring function to evaluate the gain
brought to the system by adding the user to the utility coverage
set. Note that the gain function meets the law of diminishing
marginal utility, which is defined in (19). Meanwhile, user
ui sends offloading decision to neighbors, and receives the
decision information xni′j(t) from neighbors ui′ to unify local
information. Then, using the known decision information
of neighbors, ui utilizes Algorithm 2 to construct a utility
coverage set based on partial enumeration and greedy idea,
as shown in lines 2-17 of Algorithm 3. Note that for each
user without task in time slot t, decision information is
also obtained through communications, and a utility coverage

set is constructed, as shown in lines 18-21 of Algorithm
3. Meanwhile, each user updates and maintains its current
known maximum utility coverage set by communications and
consensus agreements with the neighbor set Ũi, as shown in
lines 22-26 of Algorithm 3. When users and their neighbors
maintain the same maximum utility coverage set for each UAV,
DCOP stops iterating and returns the corresponding offloading
decisions and path planning decisions.

V. MATHEMATICAL ANALYSIS

Since multiple IoT nodes improve energy efficiency in a
distributed computing, which means that each user does not
have the global information in constructing the utility coverage
set. Therefore, the global maximum utility coverage set cannot
be directly obtained. However, through the communication
process and consensus agreement in our algorithm, the local
maximum utility coverage set maintained by each IoT node
is passed to neighbor nodes for updating. According to the
submodularity of the gain function in Section IV-B, it can
be proved that DCOP obtains a suboptimal solution with
a performance guarantee (Theorem 2). Next, we give the
detailed proof of the performance guarantee of DCOP.

Theorem 2 Performance Guarantee: The gain of energy
efficiency ξ(ΠG) of UAV vj obtained by DCOP approximates
the optimal gain ξ(Π∗) with an approximation ratio 1− 1

e ,
that is

ξ(ΠG) ≥
(

1− 1

e

)
ξ(Π∗). (25)

Proof. In the process of constructing the utility coverage set in
Algorithm 3, suppose users are added to a non-empty initial
set with d elements based on a greedy idea. According to
the properties of a greedy algorithm with knapsack constraint,
a performance bound depending on the initial set can be
obtained [48], [50]. Furthermore, the algorithm has the perfor-
mance bound with constant-factor approximation, which can
be proved in Theorem 2.

Denote the optimal utility coverage set of UAV vj as
Π∗ = {u∗1, u∗2, . . . , u∗n}, the set of the first i elements in Π∗ as
Π∗i = {u∗1, u∗2, . . . , u∗i }, where the elements of Π∗ are ordered
according to the following formula

u∗i = arg max
u∈Π∗\Π∗i−1

ξΠ∗i−1
(u), (26)

where ξΠ∗i−1
(u) is the marginal utility of adding u to the set

Π∗i−1. The initial utility coverage set is composed of the first
d elements in Π*, denoted as Π*

d. Then, Algorithm 3 can
be regarded as a greedy algorithm with knapsack constraint.
Denote U\Π∗d as the candidate set, the UAV’s remaining
resource fd , fmax

j −$(Π∗d) is the resource constraint, and
the function ξΠ∗d is the marginal utility.

In Algorithm 3, if the resource constraint is violated when
u∗ is added, that is, $(ΩG+u*) ≥ fd, the algorithm exits the
iteration process. Now the set selected by line 2-9 in Algorithm
2 is denoted as ΩG, the final utility coverage set generated by
Algorithm 3 is denoted as ΠG, and we have

ΠG = Π∗d ∪ ΩG. (27)
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Let Ωi ⊆ U\Π∗d represents the set consisting of the first i
elements selected by line 2-9 in Algorithm 2, Ω* ⊆ U\Π∗d
represents the optimal utility coverage set that can be selected,
and we have

Π∗ = Π∗d ∪ Ω∗. (28)

According to the properties of the monotone submodular
function [48], we have

ξΠ∗d(Ω*) ≤ ξΠ∗d(Ωi−1) +
∑

ui∈Ω*\Ωi−1

(ξΠ∗d)
Ωi−1

(ui)

= ξΠ∗d(Ωi−1) +
∑

ui∈Ω*\Ωi−1

$(ui)
(ξΠ∗d)

Ωi−1
(ui)

$(ui)

≤ ξΠ∗d(Ωi−1) +
∑

ui∈Ω*\Ωi−1

$(ui)
(ξΠ∗d)

Ωi−1
(u∗i )

$(u∗i )

(29)

where ξΠ∗d(Ω∗) represents the marginal utility brought by
adding the set Ω* to Π∗d. The first inequation in (29) is based on
the properties of submodular function, the second inequation
is because the marginal utility of the i-th user u∗i in the optimal
utility coverage set is not lower than the marginal utility of an
arbitrary user ui. Then we have

ξΠ∗d(Ωi−1) +
∑

ui∈Ω∗\Ωi−1

$(ui)
(ξΠ∗d)

Ωi−1
(u∗i )

$(u∗i )

= ξΠ∗d(Ωi−1) +
∑

ui∈Ω*\Ωi−1

$(ui)
ξΠ∗d(Ωi)− ξΠ∗d(Ωi−1)

$(u*
i )

≤ ξΠ∗d(Ωi−1) +
fd

$(u*
i )

(
ξΠ∗d(Ωi)− ξΠ∗d(Ωi−1)

)
,

(30)

The equation in (30) is because the line 4 of Algorithm 2
selects the optimal cost-utility user u∗i to the utility coverage
set. And the inequation is because the resource requirements
of partial users in the optimal solution must be less than the
available UAV resources fd. Subtracting fd

$(u*
i)
ξΠ∗d(Ω*) from

both sides, we have

ξΠ∗d(Ωi)−ξΠ∗d(Ω*) ≥
(

1− $(u*
i )

fd

)(
ξΠ∗d(Ωi−1)− ξΠ∗d(Ω*)

)
.

(31)
Solving the recursive inequation yields

ξΠ∗d(Ωi)− ξΠ∗d(Ω*) ≥
(

1− $(u*
i )

fd

)(
ξΠ∗d(Ωi−1)− ξΠ∗d(Ω*)

)
≥
(

1− $(u*
i )

fd

)(
1−

$(u*
i−1)

fd

)(
ξΠ∗d(Ωi−2)− ξΠ∗d(Ω*)

)
...

≥
i∏
l=1

(
1− $(u*

l )

fd

)(
−ξΠ∗d(Ω*)

)
.

(32)

Reorganizing both sides, we have

ξΠ∗d(Ωi) ≥

(
1−

i∏
l=1

(
1− $(u*

l )

fd

))
ξΠ∗d(Ω*). (33)

Using 1− x ≤ e−x, and we have

ξΠ∗d(Ωi) ≥

(
1−

i∏
l=1

exp

(
−$(u*

l )

fd

))
ξΠ∗d(Ω*)

=

(
1− exp

(
−$(Ωi)

fd

))
ξΠ∗d(Ω*).

(34)

The above analysis does not consider the assumption that the
resource constraint needs to be met when adding ui to ΩG.
In DCOP, adding users to the offloading set will take resource
consumption of UAVs. Therefore, the relation of (34) can be
applied to ΩG + u∗, where adding user u∗ just violates the
resource constraint, $(ΩG) ≤ fd, and $(ΩG) +$(u∗) ≥ fd,
that is

ξΠ∗d(ΩG + u∗) ≥
(

1− exp

(
−$(ΩG + u∗)

fd

))
ξΠ∗d(Ω∗)

=

(
1− exp

(
−$(ΩG) +$(u∗)

fd

))
ξΠ∗d(Ω∗)

≥
(

1− exp

(
−fd
fd

))
ξΠ∗d(Ω∗)

=

(
1− 1

e

)
ξΠ∗d(Ω∗)

(35)

where ΩG +u∗ means adding u∗ to the set ΩG. According to
the definition of the marginal utility function, (27) and (28),
(35) can be further simplified as

ξ(ΠG + u∗)− ξ(Π∗d) ≥
(

1− 1

e

)
(ξ(Π∗)− ξ(Π∗d)) . (36)

Furthermore, according to the submodularity of the gain
function in Lemma 1 and the ordering of elements in Π∗d,
we have

ξΠG(u∗) ≤ ξΠ∗i (u∗) ≤ ξΠ∗i−1
(u∗i ) = ξ(Π∗i )− ξ(Π∗i−1), (37)

where Π∗i ⊆ ΠG, and 1 ≤ i ≤ d. Summing both sides for
i = 1, 2, . . . , d , using the law of telescoping sum yields

d ·ξΠG(u∗) ≤ ξ(Π∗d)−ξ(Π∗0) = ξ(Π∗d)−ξ(∅) = ξ(Π∗d). (38)

Expanding the gain function on the left side of the inequation
and reorganizing the terms, we have

ξ(ΠG + u∗) ≤ ξ(ΠG) +
1

d
ξ(Π∗d). (39)

Combining (36) and (39), we have

ξ(ΠG) ≥
(

1− 1

e

)
ξ(Π∗) +

(
1

e
− 1

d

)
ξ(Π∗d). (40)

For (40), when 1
e −

1
d ≥ 0, we have d ≥ 3. By scaling

the last term on the right side of the inequation, we get the
performance bound (25), which shows that the solution of
Algorithm 3 can approximate the optimal solution with an
approximation ratio 1− 1

e . Hence, Theorem 2 is proved.

VI. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the proposed
DCOP through extensive simulations. We simulate a three-
dimensional space 1000*1000*50 m3, where 110 anchor nodes
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Fig. 3. (a) Trajectories of three UAVs in two adjacent time slots, U=400, P=0.25, (b) Trajectories of three UAVs in two adjacent time slots, U=800, P=0.2.

TABLE II
SIMULATION PARAMETERS

Parameter Value Parameter Value

|U | 300-1000 |V | 3
|R| 110 fmax

j 3-17 GHz
ê 5 θ̂ 15◦

ρ0 -50 dB B 4 MHz
βi 1 W σ2 -110 dBm
η1 9.26× 10−4 η2 2250

are regularly deployed, 1000 IoT nodes are deployed in ran-
dom locations and moving continuously, and 3 UAVs provide
computational support to IoT nodes. To evaluate the dynamic
optimization process of DCOP, we use the quasi-static network
scenarios for simulations [34], [38]. Specifically, in one time
slot, the locations of UAV and IoT nodes are fixed, but IoT
nodes have mobility between different time slots. In order to
comprehensively evaluate the performance of the algorithms,
IoT nodes follow two movement models in the simulations,
including map-based movement model for 40% of IoT nodes
and random walk model for 60% of IoT nodes [51]. In each
time slot, IoT nodes randomly generate tasks with a probability
P ∈ [0.2, 0.5]. Each UAV is equipped with multiple CPU
cores with the maximum computing capacity from 3 GHz
to 17 GHz. The IoT task size σki (t) is uniformly distributed
within [0.5, 2.5] Mb, and the required computing intensity
wki (t) is uniformly distributed within [500, 1000] cycles/bit.
The parameters of propulsion energy consumption [45] and
other important parameters in the simulations are shown in
Table II.

Furthermore, we conduct performance comparisons be-
tween our algorithm and the following algorithms: 1)
Utility-based greedy distributed algorithm (UGDA)-the util-
ity coverage set is constructed based on the maximum
marginal utility of users, rather than the ratio of the
marginal utility to the occupied resources, that is, Πn

ij(t) ←
Πn
ij(t)

⋃
arg maxui∈Ũij\Πnij(t)

ξk,nij (t); 2) Maximum utility
first algorithm (MUFA)-borrowing the idea of maximizing the

total bits offloaded to UAVs in [37], UAVs sequentially select
the user with the largest utility as the center to construct the
utility coverage set, and perform computation offloading; 3)
Nearest user first algorithm (NUFA)-UAVs construct utility
coverage set centered on the nearest user and provide compu-
tational support; 4) Random optimization algorithm (ROA)-
UAVs randomly select users with tasks to construct utility
coverage set and perform computation offloading; 5) Circular
fixed cycle algorithm (CFCA)-used in [16], UAVs perform
circular cycle movement with a fixed radius to cover the
entire area as much as possible and provide computational
support. We evaluate the performance of the algorithms in
terms of the following metrics: energy efficiency, system
utility, energy consumption, number of serving requests, and
resource utilization.

Furthermore, we evaluate the positioning algorithm TSIP
with different numbers of IoT nodes. Specifically, we utilize
the root mean square error (RMSE) [21] to represent the
positioning error, which is given by

ε =

√
1

|U |
∑
ui∈U

‖pi(t)− p∗i (t)‖
2
, (41)

where p∗i (t) is the real location of IoT node ui, and pi(t) is
the estimated location of ui by the positioning algorithm. We
compare TSIP and the latest positioning algorithm iTOA [21]
in terms of positioning error.

A. Energy Efficiency

Energy efficiency is an important performance metric, which
represents the execution efficiency of the multi-UAV-enabled
edge computing system. We evaluate the energy efficiency of
our proposed algorithm and compared algorithms under dif-
ferent numbers of IoT nodes and UAV processing capabilities,
which is defined as shown in (10). Fig. 3 shows the trajectories
of three UAVs in two adjacent time slots and the maximum
utility coverage set constructed by DCOP under different
numbers of users. Note that Fig. 3 only shows the IoT nodes
with tasks in the current time slot, and these tasks are randomly
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Fig. 4. (a) Energy efficiency under different numbers of users, (b) Energy efficiency under different computation capacities of UAVs.
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Fig. 5. (a) System utility under different numbers of users, (b) System utility under different computation capacities of UAVs.

generated with probability P . Our proposed DCOP constructs
the maximum utility coverage set based on energy efficiency
and resource cost. Simulation results of energy efficiency are
shown in Fig. 4, where we can observe that DCOP achieves the
highest energy efficiency, and the energy efficiency of UGDA
approaches DCOP. Specifically, as shown in Fig. 4(a), when
the number of IoT nodes is 500, the energy efficiency of DCOP
is 21.29, which achieves 128.68% gains than MUFA. When the
number of IoT nodes is 800, the energy efficiency of DCOP is
33.74, which achieves 147.72% gains over MUFA and 8.35%
gains over UGDA. The energy efficiency with different UAV
capacities is shown in Fig. 4(b). When the UAV capacity
is 5 GHz, the energy efficiency of DCOP is 16.40, which
gains more than 6.50% over the comparison algorithms. This
is because DCOP considers both the utility and the energy
consumption of UAVs in constructing the utility coverage
set, and selects the maximum utility coverage set to plan the
UAV’s trajectory and perform computation offloading, which
improves the energy efficiency of the system. Furthermore,
Theorem 2 also provides a theoretical guarantee for the energy

efficiency performance of DCOP.

B. System Utility

The system utility is the amount of data offloaded to UAVs,
which represents the ability of UAVs to provide computational
support to IoT nodes. Fig. 5 shows the system utility under
different numbers of IoT nodes and UAV capabilities. MUFA
achieves a high system utility because it aims to maximize
the utility of computation offloading regardless of the energy
consumption of UAVs and occupied computing resources.
Therefore, when the number of users is insufficient, MUFA
can maximize the system utility with sufficient resources.
However, MUFA cannot execute decisions according to the
optimal cost-utility, and performs worse than DCOP with more
users. Specifically, as shown in Fig. 5(a), when the number of
IoT nodes is 700, the system utility of DCOP is 90.70 Mb,
and when the number of IoT nodes increases to 1000, the
system utility is 110.41 Mb, which gains 20.69% than ROA.
The system utility versus UAV capability is shown in Fig.
5(b). When the UAV capability is 11 GHz, the system utility of
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Fig. 6. (a) Number of serving requests by UAVs under different numbers of users, (b) Number of serving requests by UAVs under different computation
capacities of UAVs.
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Fig. 7. (a) Energy consumption of UAVs under different numbers of users, (b) Energy consumption of UAVs under different computation capacities of UAVs.

DCOP is as high as 85.58 Mb and achieves 10.11% gains over
UGDA. The main reason is that DCOP takes into account the
amount of data offloaded from IoT nodes and the computing
resources occupied by tasks, adding users according to the
ratio of utility to cost, and selecting the maximum utility
coverage set for execution. DCOP improves system utility and
provides powerful computational support to IoT nodes.

C. Number of Serving Requests

The number of serving requests by UAVs is also an im-
portant metric, which represents the ability of UAVs to admit
IoT node requests. Simulation results of the number of serving
requests are shown in Fig. 6. From Fig. 6(a), we can observe
that as the number of users increases, DCOP performs best
in the number of serving requests. As shown in Fig. 6(b),
when the UAV capability is 9 GHz, the average number of
user requests processed by DCOP is 45.80. When the UAV
capability increases to 17 GHz, the average number of user
requests processed by DCOP is 59.80, which achieves 5.47%

gains over MUFA and 24.10% gains over ROA. Simulation
results demonstrate that DCOP achieves high performance in
the number of serving requests. This is because DCOP can
reasonably plan the trajectories of UAVs and make offloading
decisions by constructing utility coverage sets and consensus
agreements, which largely admits IoT node requests.

D. Energy Consumption

The energy consumption of UAVs is an essential metric
for evaluating system performance, and it is affected by the
randomness of user movement. Fig. 7 shows the average value
of the energy consumption of 3 UAVs. The average energy
consumption of these algorithms tends to be stable because the
propulsion energy consumption of UAVs is much greater than
the computational energy consumption. The energy consump-
tion of UGDA approaches the value of DCOP because these
two algorithms are implemented by the idea of constructing
the maximum utility coverage set and consensus agreement to
perform trajectory planning. The average energy consumption
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TABLE III
POSITIONING ERROR

Number of IoT nodes 100 300 500 700 1000

TSIP(m) 7.11 7.28 7.56 7.63 7.78
iTOA(m) 9.24 9.27 9.40 9.46 9.52

of DCOP is 3.01 kJ, which is 55.85% lower than ROA. The
main reason is that DCOP considers both the amount of data
offloaded from IoT nodes and the energy consumption of
UAVs, which significantly improves the energy efficiency of
UAVs by reasonably planning the trajectories of UAVs.

E. Computation Resource Utilization and Positioning Error

The computation resource utilization represents the uti-
lization efficiency of each UAV, and the positioning error
can reflect the positioning accuracy of our proposed TSIP
algorithm. We evaluate the computation resource utilization
of the algorithms with 3 UAVs as shown in Fig. 8. The
average resource utilizations of 3 UAVs of DCOP are 98.37%,
99.61%, and 96.98%, respectively, which are significantly
higher than those of other comparison algorithms. This is
because DCOP fully considers the amount of data offloaded
to UAVs and the computational resources occupied by tasks,
and sequentially adds the most cost-utility task to the coverage
set. Furthermore, DCOP selects the maximum utility coverage
set to plan the UAVs trajectories and perform computation
offloading, making full use of UAVs resources and improving
resource utilization.

Furthermore, we simulate 1000 time slots and take the av-
erage value of positioning error, as shown in Table III. As the
number of IoT nodes that need to be positioned increases, the
positioning error also increases. This is because the increase
in the number of IoT nodes reduces the average number of
effective anchor nodes used for each IoT node positioning.
These anchor nodes have limited energy and communication
range, which increases positioning error. Specifically, when
the number of IoT nodes is 100, the average positioning
error of TSIP is 7.11 m, and the average positioning error
of iTOA is 9.24 m. When the number of IoT nodes increases
to 1000, the average positioning error of TSIP is 7.78 m, and
the average positioning error of iTOA increases to 9.52 m.
Overall, the positioning error of TSIP is lower than that of
iTOA. This is because the TSIP constructs the positioning
units based on the proposed anchor node selection theorem,
which considers the availability of anchor nodes, as well as
the angles between anchor nodes and IoT nodes. TSIP greatly
reduces the positioning error by constructing the positioning
unit reasonably. Moreover, we provide the theoretical analysis
in Theorem 1 for reducing the positioning error in TSIP.

VII. CONCLUSION

In this paper, we have studied the joint optimization problem
of dynamic computational offloading of multiple IoT nodes
and path planning of multiple UAVs. Considering the mobility
of IoT nodes, an intelligent positioning algorithm has been
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Fig. 8. Resource utilization of UAVs.

designed to obtain real-time location information of IoT nodes
in the three-dimensional space. Then, an online distributed
algorithm has been proposed for IoT nodes computation
offloading and UAVs path planning, which breaks through
the limitation of insufficient global information. Furthermore,
we have proved that our proposed DCOP algorithm has a
performance guarantee related to energy efficiency. Finally,
simulation results have demonstrated that DCOP effectively
improves the system utility and significantly reduces the
energy consumption of UAVs. Since the complex terrain en-
vironment affects the performance and stability of the system,
we will consider improving the reliability and stability of the
UAV-enabled edge computing system under interference and
obstacle environments in future works.

REFERENCES

[1] W. Rafique, L. Qi, I. Yaqoob, M. Imran, R. U. Rasool, and W. Dou,
“Complementing IoT services through software defined networking and
edge computing: A comprehensive survey,” IEEE Commun. Surv. Tut.,
vol. 22, no. 3, pp. 1761–1804, May 2020.

[2] G. M. D. T. Forecast, “Cisco visual networking index: Global mobile
data traffic forecast update, 2017–2022,” Cisco white paper, vol. 2017,
pp. 1–36, Feb. 2019.

[3] C. Mateos, K. R. Choo, and A. Zunino, “Sharpening the edge: Towards
improved edge computing environment for mobile and IoT applications,”
Future Gener. Comput. Syst., vol. 107, pp. 1130–1133, Jun. 2020.

[4] W. Zhuang, Q. Ye, F. Lyu, N. Cheng, and J. Ren, “SDN/NFV-
empowered future IoV with enhanced communication, computing, and
caching,” Proc. IEEE, vol. 108, no. 2, pp. 274–291, Feb. 2020.

[5] T. Zhang, Y. Xu, J. Loo, D. Yang, and L. Xiao, “Joint computation and
communication design for UAV-assisted mobile edge computing in IoT,”
IEEE Trans. Ind. Inform., vol. 16, no. 8, pp. 5505–5516, Oct. 2020.

[6] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “A survey
on mobile edge computing: The communication perspective,” IEEE
Commun. Surv. Tut., vol. 19, no. 4, pp. 2322–2358, Jan. 2017.

[7] T. Nguyen, E. Huh, and M. Jo, “Decentralized and revised content-
centric networking-based service deployment and discovery platform in
mobile edge computing for IoT devices,” IEEE Internet Things J., vol. 6,
no. 3, pp. 4162–4175, Jun. 2019.

[8] Y. Hu, M. Patel, D. Sabella, N. Sprecher, and V. Young, “Mobile edge
computing-a key technology towards 5G,” ETSI white paper, vol. 11,
no. 11, pp. 1–16, Sept. 2015.

[9] G. Castellano, F. Esposito, and F. Risso, “A distributed orchestration
algorithm for edge computing resources with guarantees,” in Proc. IEEE
Conf. Comput. Commun. (INFOCOM), Apr. 2019, pp. 2548–2556.

Authorized licensed use limited to: Universita degli Studi di Roma Tor Vergata. Downloaded on May 14,2022 at 08:09:34 UTC from IEEE Xplore.  Restrictions apply. 



2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2022.3175050, IEEE Internet of
Things Journal

14

[10] B. P. Rimal, D. P. Van, and M. Maier, “Cloudlet enhanced fiber-
wireless access networks for mobile-edge computing,” IEEE Trans.
Wirel. Commun., vol. 16, no. 6, pp. 3601–3618, Mar. 2017.

[11] A. Ksentini and P. A. Frangoudis, “On extending ETSI MEC to support
LoRa for efficient IoT application deployment at the edge,” IEEE
Commun. Stand. Mag., vol. 4, no. 2, pp. 57–63, Jun. 2020.

[12] S. Wan, J. Lu, P. Fan, and K. B. Letaief, “Toward big data processing in
IoT: Path planning and resource management of UAV base stations in
mobile-edge computing system,” IEEE Internet Things J., vol. 7, no. 7,
pp. 5995–6009, Jun. 2020.

[13] X. Xiong, K. Zheng, L. Lei, and L. Hou, “Resource allocation based
on deep reinforcement learning in IoT edge computing,” IEEE J. Sel.
Areas Commun., vol. 38, no. 6, pp. 1133–1146, Apr. 2020.

[14] Z. Chang, L. Liu, X. Guo, and Q. Sheng, “Dynamic resource allocation
and computation offloading for IoT fog computing system,” IEEE Trans.
Ind. Inform., vol. 17, no. 5, pp. 3348–3357, Jun. 2021.

[15] X. Hu, K. Wong, K. Yang, and Z. Zheng, “UAV-assisted relaying and
edge computing: Scheduling and trajectory optimization,” IEEE Trans.
Wirel. Commun., vol. 18, no. 10, pp. 4738–4752, Dec. 2019.

[16] M. Li, N. Cheng, J. Gao, Y. Wang, L. Zhao, and X. Shen, “Energy-
efficient UAV-assisted mobile edge computing: Resource allocation and
trajectory optimization,” IEEE Trans. Veh. Technol., vol. 69, no. 3, pp.
3424–3438, Jan. 2020.

[17] L. D. Nguyen, A. E. Kalør, I. L. Mayorga, and P. Popovski, “Trusted
wireless monitoring based on distributed ledgers over NB-IoT connec-
tivity,” IEEE Commun. Mag., vol. 58, no. 6, pp. 77–83, Apr. 2020.

[18] M. Pradhan and J. Noll, “Security, privacy, and dependability evaluation
in verification and validation life cycles for military IoT systems,” IEEE
Commun. Mag., vol. 58, no. 8, pp. 14–20, Aug. 2020.

[19] Z. Tan, H. Qu, J. Zhao, S. Zhou, and W. Wang, “UAV-aided edge/fog
computing in smart IoT community for social augmented reality,” IEEE
Internet Things J., vol. 7, no. 6, pp. 4872–4884, Feb. 2020.

[20] F. Zhou, Y. Wu, R. Q. Hu, and Y. Qian, “Computation rate maximization
in UAV-enabled wireless-powered mobile-edge computing systems,”
IEEE J. Sel. Areas Commun., vol. 36, no. 9, pp. 1927–1941, Jun. 2018.

[21] Y. Kang, Q. Wang, J. Wang, and R. Chen, “A high-accuracy TOA-based
localization method without time synchronization in a three-dimensional
space,” IEEE Trans. Ind. Inform., vol. 15, no. 1, pp. 173–182, Jan. 2019.

[22] Y. Li, Y. Zhuang, X. Hu, Z. Gao, J. Hu, L. Chen, Z. He, L. Pei, K. Chen,
M. Wang, X. Niu, R. Chen, J. Thompson, F. M. Ghannouchi, and
N. El-Sheimy, “Toward location-enabled IoT (LE-IoT): IoT positioning
techniques, error sources, and error mitigation,” IEEE Internet Things
J., vol. 8, no. 6, pp. 4035–4062, Apr. 2021.

[23] X. Chen, X. Wang, B. Yi, Q. He, and M. Huang, “Deep learning-based
traffic prediction for energy efficiency optimization in software-defined
networking,” IEEE Syst. J., vol. 15, no. 4, pp. 5583–5594, Dec. 2021.

[24] L. Li, T. Q. S. Quek, J. Ren, H. H. Yang, Z. Chen, and Y. Zhang, “An
incentive-aware job offloading control framework for multi-access edge
computing,” IEEE Trans. Mobile Comput., vol. 20, no. 1, pp. 63–75,
Jan. 2021.

[25] Y. Mao, J. Zhang, and K. B. Letaief, “Dynamic computation offloading
for mobile-edge computing with energy harvesting devices,” IEEE J.
Sel. Areas Commun., vol. 34, no. 12, pp. 3590–3605, May 2016.
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