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Abstract
Multi-behavior session-based recommendation aims to predict the next item, such as a
location-based service (LBS) or a product, to be interacted by a specific behavior type (e.g.,
buy or click) in a session involving multiple types of behaviors. State-of-the-art methods
generally model multi-behavior dependencies in item-level, but ignore the potential of dis-
covering useful patterns of multi-behavior transition through feature-level representation
learning. Besides, sequential and non-sequential patterns should be properly fused in session
modeling to capture dynamic interests within the session. To this end, this paper proposes
a Graph Neural Network based Hybrid Model GNNH, which enables feature-level deeper
representations of multi-behavior interaction sequences for session-based recommenda-
tion. Specifically, we first construct multi-relational item graph (MRIG) and feature graph
(MRFG) based on session sequences. On top of the MRIG and MRFG, our model takes
advantage of GNN to capture item and feature representations, such that global item-to-item
and feature-to-feature relations are fully preserved. Afterwards, each multi-behavior ses-
sion is modeled by a seamless fusion of interacted item and feature representations, where
self-attention and mean-pooling are used to obtain sequential and non-sequential patterns
simultaneously. Experiments on two real datasets show that the GNNH model significantly
outperforms the state-of-the-art methods.

Keywords Recommendation systems · Session-based recommendation ·
Multi-behavior modeling

1 Introduction

In the past few years, session-based recommendation [14, 19, 24, 39] has attracted
widespread attention and achieved certain developments. Compared to traditional rec-
ommendation, session-based recommendation employs only user interactions during the
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ongoing session, instead of all historical interactions. With the help of session-based rec-
ommendation and development of trajectory matching technique [32, 33, 35], users can be
informed of their intended point-of-interests (POIs) or location-based services when brows-
ing, and it thus plays an important role for online LBS systems. Therefore, we can customize
online recommendation systems [1, 20, 21] through mining the interests of users from their
behaviors. Wang et al. [43] argues that session-based recommendation captures short-term
user preferences to provide timely and accurate recommendations and the key challenge is
to tackle the problem of modeling user dynamic interests from few interactions within one
session. Markov chain [28] is a classical example, which fails to capture the complex depen-
dencies among items in sessions. Recent studies take advantage of deep neural networks
to capture user preferences within sessions in a more effective way, such as representative
models including RNN-based GRU4Rec [14] and later an improved version [39]. Moreover,
attentive networks have been introduced into session-based recommendation [19, 24] and
further boost the performance.

The classical session-based recommendation models mentioned above are designed
for single-behavior (e.g., POI check-in with smartphones), while in fact, the major-
ity of sessions contain multi-behavior information (e.g., browse the POIs and related
reviews, etc). For such multi-behavior sessions, it is necessary to utilize auxiliary
behavior information to improve the target behavior prediction performance. Although
some recommendation models [7, 15, 22, 25, 40] have taken multi-behavior modeling
into consideration, they are not session-aware and thus not suitable for session-based
recommendation. To this end, an improved session-based recommendation model is
highly demanded to capture multi-behavior information within sessions in an effective
manner.

However, multi-behavior session-based recommendation is very important yet challeng-
ing. It is essential to find a mechanism to model the correlations among multiple behaviors.
The state-of-the-art method is a model proposed by Wang et al. [45], which successfully
incorporates the influences of auxiliary behavior for enhanced recommendation in target
behavior. Specifically, it employs Graph Neural Network (GNN) [17] to learn the global
item-to-item relations, such that user preferences can be largely inferred by the interacted
items of the multi-behavior session. Unfortunately, multi-behavior modeling in [45] is per-
formed in the item-level, meaning that it may not be able to fulfill its potential due to
possible insufficient utilization of content information.

Although multi-behavior modeling has been considered in [45] for session-based recom-
mendation, we argue that it is of great significance to model multi-behavior dependencies
in a finer granularity. In [45], user behavior correlations are captured in the item-level
only. In reality, aside from item-level dependencies, the transition patterns may also appear
in feature-level, i.e., category or description text. For example, a user is likely to look
for hotels and car rental services after booking a flight ticket, indicating that we should
design a neural network model to capture dependencies in both item and feature per-
spectives simultaneously. However, feature-level dependencies can hardly be captured by
existing model. Besides, implicit features from unstructured description texts are also quite
crucial, but they are overlooked by state-of-the-art methods. In addition, according to
[44], both sequential and non-sequential patterns are essential for capturing session-based
dynamic preference. Nevertheless, long-term dependencies are neglected by multi-behavior
recommendation method [45], resulting in limitations on modeling certain behaviors
(e.g., click).
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To solve the aforementioned limitations, we propose a Graph Neural Network based
Hybrid Model, namely GNNH in short. This model enables feature-level deeper repre-
sentations of multi-behavior interaction sequences for session-based recommendation. Our
method constructs not only multi-relational item graph (MRIG) from behavior sequences in
all sessions, but also multi-relational feature graph (MRFG) corresponding to item. Based
on these two graphs, we further take advantage of GNN to perform representation learning
for items and explicit features, such that both item-to-item and feature-to-feature relations
in multi-behavior sessions can be fully preserved. Moreover, to incorporate the effects of
implicit features, our model captures and adaptively selects essential implicit features from
textual descriptions by vanilla attention, so that all useful content information can be uti-
lized for more rational recommendation. Besides, we model multi-behavior sessions by a
seamless fusion of interacted item and feature representations, in which both self-attention
and mean-pooling are used to obtain sequential and non-sequential patterns simultaneously.
The main contributions of this paper are summarized as follows:

• We propose a GNNH model for session-based recommendation, which is crucial
for LBS systems. GNNH divides multi-behavior representation learning into item-
based and feature-based to fully capture multi-behavior transition patterns in a finer
granularity.

• We not only capture the explicit transition patterns between features, but also adaptively
select useful implicit features derived from textual descriptions by vanilla attention,
which contributes to better utilization of content information.

• To make full use of auxiliary behavior information, we propose a carefully designed
session representation method, which combines mean-pooling and self-attention
together to capture both sequential and non-sequential patterns.

• We carry out extensive experiments on two real datasets. GNNH achieves the best
performance among strong competitors, manifesting the benefits of solving these
limitations.

The remaining parts are organized as follows: First, we review the related work regarding
session-based recommendation and multi-behavior modeling in Section 2, and formu-
late the problem in Section 3. Then we illustrate our proposed model in Section 4.
Finally, we show extensive experimental results in Section 5, and conclude our work in
Section 6.

2 Related work

2.1 Session-based recommendation

Session-based recommendation aims to predict user actions on implicit feedback, where
sessions are anonymous, and no explicit preferences (e.g., ratings) but only positive observa-
tions (e.g., browses or purchases) are provided [13]. Since no user profile can be constructed
from history records, classical CF methods (e.g., matrix factorization) break down. In recent
years, the majority of researches [14, 19, 39, 41] apply Recurrent Neural Networks for
session-based recommendation and achieve promising results. For instance, Hidasi et al.
[14] first proposes to model short-term preferences with Gated Recurrent Unit (GRU), and
later the model [39] is enhanced by data augmentation and a method to account for temporal
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shifts. Besides, attention-based methods have been introduced into recommender systems.
Kang et al. [16] proposes a self-attention based sequential model, which outperforms
RNN-based sequential recommendation methods. In the session-based setting, [19] utilizes
attention mechanism to capture a user’s sequential behavior and its main purpose. Nowa-
days, GNN [12, 51] has been proposed to learn representations of graph-structured data.
For instance, [46] utilizes GNN to model item-to-item relations separately and locally in
one behavior sequence. It’s different that our work encodes representation globally through
performing GNN on the graph which contains sequences from all sessions, and we consider
both sequential and non-sequential patterns by utilizing mean-pooling and self-attention
together.

2.2 Multi-behavior modeling

Multi-behavior recommendation aims to leverage multiple behaviors for boosting the rec-
ommendation performance on target behavior. Early studies mainly approach this task from
two aspects. One category [25, 27] utilizes multi-behavior data into the sampling process
and adopts the strategy of multi-sampling to reinforce the model learning process. The other
category [36, 40] designs matrix factorization based model to conduct the factorization on
multiple behavior matrices at the same time.

More recently, a neural network approach is proposed by [7] to learn representations
for user-item interactions with different behaviors. It is a deep model for multi-task learn-
ing by regarding different types of behaviors as the cascading sequences. Though above
method takes advantage of the advance in neural network based recommendation, it assumes
the independence of different user-item interactions. However, it is more realistic to con-
sider modeling sequential user behaviors in the session setting. [45] is a state-of-the-art
multi-behavior session-based recommendation model, which builds item graph based on
all behavior sequences from sessions. Based on the graph, it can learn global item-to-item
relations and further obtain user preferences. Nevertheless, the model overlooks the fea-
ture information and we can also incorporate the transition patterns of user interactions in
feature-level to further improve the performance. In addition, long-term dependencies are
neglected by [45], especially for behavior sequence (e.g., click). It thus calls for an improved
model that can model multi-behaviors in a finer granularity for more accurate session-based
recommendation.

2.3 Point-of-interest recommendation

With the development of Location-based Social Network (LBSN) [3, 5, 34, 37], it provides
a variety of location information and user check-in behavior. Therefore, we can recommend
next Point-of-Interests (POI) to mobile users with the history activities. There are a num-
ber of POI-related applications that are very valuable including travel planning [31, 47],
crowdsourcing task assignment [23, 30], travel time estimation [49], destination prediction
[48], top-k term publish/subscribe [2, 4]. Because LBSN contains various types of implicit
information, such as geographical, temporal, context and social information, that are easy
to apply to MF and LDA. MF is a good algorithm to apply to implicit information or social
information. Some studies [6, 8] utilized MF to quantify the importance of geographical
information by finding the representative location of a vast number of POIs. Afterwards,
[18] held that recommender algorithms based on probability distribution such as LDA can
outperform MF in LBSN-based POI recommendation by using the frequency of items as
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a measure of the user’s preference in some situations. Recently, to alleviate the problem
of data sparsity, [10, 11] maximized AUC by transforming the recommendation task to
a classification problem. [9] explicitly utilized similarity with contextual information and
incorporated global and local context to achieve good recommendation performance. In our
proposed method, we additionally model transition patterns in feature level by considering
both explicit features like category and other implict features.

2.4 Multi-relational graph neural network (MGNN) [45]

Existing methods for session-based behavior prediction focused on only utilizing the same
type of user behavior for prediction without considering the potential of taking other
behavior data as auxiliary information, especially when the target behavior is sparse but
important (e.g., buying or sharing an item). Secondly, item-to-item relations are modeled
separately and locally in one behavior sequence, and they lack a principled way to globally
encode these relations more effectively. To overcome these limitations, MGNN proposed a
novel Multi-relational Graph Neural Network for Session-based target behavior prediction.
Specifically, MGNN built a Multi-Relational Item Graph (MRIG) based on all behavior
sequences from all sessions, involving target and auxiliary behavior types. Based on MRIG,
MGNN learned global item-to-item relations and further obtained user preferences. In the
end, MGNN leveraged a gating mechanism to adaptively fuse user representations for
predicting next item interacted with target behavior.

3 Problem definition

Given an anonymous session set S, each session s has an item sequence representing the

target behavior (e.g., buy) P s =
[
ps
1, p

s
2, . . . , p

s|P s |
]
and another item sequence representing

the auxiliary behavior (e.g., click) Qs =
[
qs
1, q

s
2, . . . , q

s|Qs |
]
. The items of each sequence

are arranged in the chronological order of user interaction, where |P s | and |Qs | represent
the number of items in the respective sequence. Each item in the sequence can be a POI
or a location-based service, which has corresponding categorical features (e.g., shop and
category) and other textual features (e.g., description text and review). For example, the
category of item m is represented as cm ∈ C. For the textual features corresponding to each
item, we can extract keywords km and textual semantics tm from text.

Moreover, we construct Multi-Relational Item Graph (MRIG) and Multi-Relational Fea-
ture Graph (MRFG) from behavior sequences in all sessions. MRIG is similar to MRFG, we
formulate MRFG for example. MRFG is a feature graph Gf = (Vf , Ef ) based on all fea-
ture behavior sequences, where Vf is the set of nodes in the graph containing all available
features of the same type (e.g., category), and Ef is the edge sets involving multiple types
of directed edges. Each edge is a triple consisting of the head feature, the tail feature and
the type of this edge. For instance, if we construct the category graph based on behaviors of
buying and clicking, then an edge (a, b, buy ) ∈ Ef means a user bought item in category a
and subsequently bought item in category b, and an edge (a, b, click ) ∈ Ef means a user
clicked item in category b after clicking item in category a.

Then the goal of session-based target behavior prediction is to learn a model that can gen-
erate K items which are most likely to be interacted with certain user under target behavior
in the next.
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4 The proposedmodel

In this section, we will firstly present the overall architecture of our GNNH for session-
based target behavior prediction. As illustrated in Fig. 1, GNNH models multi-behavior
sequences in both item-level and feature-level, so that we can capture transition patterns in
a finer granularity besides making full use of auxiliary behavior information.

4.1 Overview

The overall architecture of our GNNH model is shown in Fig. 1. There are four modules
in the model. Specifically, in the preprocessing module, we construct multi-relational item
graph (MRIG) and feature graph (MRFG) based on sequences from all sessions, so that
complex relationships in both item and feature levels are contained. In the item-based rep-
resentation learning module, we perform GNN on MRIG to learn the representations of
items, in which global item-item relations are captured. The feature-based representation
learning module further learns global feature-feature relations through GNN, so that multi-
behavior transition patterns in a finer granularity can be fully obtained. Besides, we also
combine representations of both explicit and implicit features through vanilla attention. In
the session representation learning module, each session is modeled by a seamless fusion
of interacted item and feature representations, where self-attention and mean-pooling are
utilized simultaneously.

Feature-based Representa�on Learning

Item-based Representa�on LearningPreprocessing Session Representa�on Learning

Item 
Embedding

Category 
Embedding

click/buy descrip�on texts

Item click/buy sequences

category click/buy sequences
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Fig. 1 The framework of our GNNH approach
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4.2 Preprocessingmodule

4.2.1 Embedding layer

Every item and categorical feature should have its corresponding embedding vector. Take
category as an example, we use embedding vector h

m
(0)
i

∈ Rl and h
c
(0)
j

∈ Rl to describe

an item and a category, where l is the size of each embedding. The item embedding and the
category embedding are represented by vector matrices M and C separately.

M =
{
h

m
(0)
1

, h
m

(0)
2

, . . . , h
m

(0)
n

}
, C =

{
h

c
(0)
1

, h
c
(0)
2

, . . . , h
c
(0)
k

}
(1)

For each node on item graph, we use one hot vector to describe their IDs, and then obtain
the corresponding dense vector representation through applying a lookup layer on the learn-
able embedding matrix. For categorical features (e.g., category and shop), the same way is
applied. For the textual features corresponding to each item (e.g., description text, review),
we first adopt topic model to extract five topical keywords from text, and then apply
Word2vector [26] to learn textual semantic representations. Finally, all topical keyword
vectors are fused into a vector representation by mean-pooling.

It is worth noting that vectors in item and categorical feature matrices can be directly
used as input for the graph neural network framework. Textual vector representations skip
GNN and are combined with other vectors directly later.

4.2.2 Construction of multi-relational item graphMRIG

We construct an item graph based on users’ historical interaction sequences, which represent
multiple relationships between items. For example, if a user buys itemM1, and subsequently
buys item M2 in the same session, it probably means the dependency between item M1
and item M2, rather than the similarity relationship since users seldom buy similar items
continually in a short period. In the same way, if a user clicks item M1, and subsequently
clicks item M3, it indicates that item M1 and item M3 are similar according to user habits.

In the item graph, we take all items as nodes and each type of behavior corresponds
as one directed edge, denoting different relationships between items. Specially, we browse
both target and auxiliary behavior sequences from all sessions P s and Qs(∀s ∈ S), and
collect each itemmi in the sequences as node of graph. When constructing edges from target
behavior sequences, we regard each consecutive pair (mi−1,mi) as one directional edge,
indicating target transition relationship. The auxiliary behavior edges are also constructed
on MRIG in the same fashion.

4.2.3 Construction of multi-relational feature graphMRFG

In addition to MRIG, it’s also necessary to construct a multi-relational feature graph (e.g.,
category graph) since we also want to capture the explicit feature-to-feature relations. Sim-
ilar to MRIG, if one user clicks an item in category C3 in the e-commerce system, and
subsequently clicks another item in category C1 in the same session, it is very likely that
C3 and C1 are similar or even identical. In comparison, if the user purchases an item in cat-
egory C2 and then purchases another item in category C3, the two categories complement
with each other.
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The construction of MRFG is similar to MRIG. We take all features of the same type
(e.g., category) as nodes and each type of behavior corresponds as one directed edge,
denoting different relationships between features. Based on the MRIG and MRFG, we will
explain item-based and feature-based representation learning module separately.

4.3 Item-based representation learningmodule

In this section, we learn item correlations fromMRIG by graph neural networks and encode
them into item representations. In this way, meaningful transition patterns can be cap-
tured in item-level by modeling item sequences of each behavior type separately. Item-level
representations of multi-behavior interaction sequences are enabled to contribute to the
last session representation learning. Here, we will introduce how Graph Neural Network
performs on MRIG as below.

4.3.1 Graph neural network

After feeding the embedding vectors of item with MRIG, we perform graph neural network
to obtain comprehensive contextual representations. These representations embed transition
relationships of multiple behavior globally because each node gathers neighbor information
from all sessions. Since GNN in the item-based and feature-based representation learning
module only differs in their inputs, we introduce GNN with MRIG briefly. Specifically, we
apply GNN in a similar way as [45].

For each item node m, there are four types of neighboring node group sets according
to the type and direction, namely “target-forward”, “target-backward”, “auxiliary-forward”
and “auxiliary-backward”. Take target as an example, adjacent node group set of target-
forward is defined as below:

Nt+(m) = {
m′ | (

m′,m, target
) ∈ E

}
(2)

Target-backward Nt−(m), auxiliary-forward Na+(m) and auxiliary-backward Na−(m) can
also reach in a similar fashion. To obtain the representation of target-forward group, we
aggregate each item in this group by mean-pooling:

hk
t+,m =

∑
m′∈Nt+(m) h

k−1
c′

|Nm+(v)| (3)

The remaining representations of three neighbor groups can be calculated in a similar way.
Then, in order to take into account both different relations between items and original
representation, we adopt sum-pooling method:

hk
m = hk

t+,m + hk
t−,m + hk

a+,m + hk
a−,m + hk−1

m (4)

After K iterations, we take the node representation of last step hm as the representation of
the corresponding item.

4.4 Feature-based representation learningmodule

Inspired by [50], we argue that useful patterns cannot be revealed by item-level modeling
of multi-behavior sequences only. In fact, feature-level sequences are essential to capture
complex dependencies of multi-behavior interactions in a finer granularity. Note that, useful
features can be explicit features (e.g., category and shop) and implicit features (e.g., features
derived from description texts).
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Therefore, we further propose a feature-level representation learning module to learn
meaningful feature-level transition patterns globally. Specifically, we perform GNN on
MRFG to capture transition relations between explicit features. Besides, we also obtain
implicit feature representations from preprocessing module and combine them with explicit
feature representations through vanilla attention to obtain full transition patterns between
features.

For explicit features, we feed the embedding vector of feature with MRFG and then per-
form graph neural network which is the same as item-based representation learning module.
Therefore, the final representations of category and other categorical feature such as shop
after performing GNN are constructed similarly, which are denoted as hc and hs .

4.4.1 Vanilla attention layer

Since there are various types of features corresponding to items, it is difficult to know how
each feature will influence next item to be interacted with target behavior. Therefore, we
employ vanilla attention to assist feature-based representation learning module to capture
the session’s varying interest toward features. For each item m, its features can be embedded
as Am = {

hsm,hcm, htext
m

}
, where hsm and hcm mean dense vector representation of shop

and category of item m respectively after utilizing GNN, and the htext
m denotes the textual

representation of item m. We compute weight score of each feature as below:

αm = softmax
(
WfAm + bf

)
(5)

whereWf is l∗ l matrices and bf is l-dimensional vector. Finally, the feature representation
of item m is computed as weighted sum of various feature vectors with attention scores.

fm = αmAm (6)

It is worth noting that if item m only considers one feature (e.g., category), then the feature
representation of item m is hcm .

4.5 Session representation learningmodule

In this section, each multi-behavior session is modeled by a seamless fusion of interacted
item and feature representations, where both self-attention and mean-pooling are used to
obtain sequential and non-sequential patterns simultaneously.

4.5.1 Mean-Pooling

Due to most sessions lasting for a short period, direct utilization of mean-pooling to obtain
sequence representations can already achieve comparable performance especially for target
behavior sequences. Therefore, our model adopts mean-pooling for both item sequences of
target behavior and auxiliary behavior to capture unordered item representations. The same
is true for feature representations. We denote the unordered representation of target behavior
sequence P and auxiliary behavior sequence Q as p and q, which are defined as follows:

p =
∑|P |

i=1[hpi
; fpi

]
|P | , q =

∑|Q|
i=1[hqi

; fqi
]

|Q| (7)

where h and f denote the representation of item-level and feature-level separately.
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4.5.2 Self-Attention

There are multi-behavior interactions in the majority of sessions, in which more interactions
in auxiliary behavior sequence than target behavior sequence. According to [44], sequential
patterns are essential for capturing dynamic preference in long sequences. Therefore, it is
necessary to take the position information of auxiliary sequence into consideration to distin-
guish different items or features in the sequence. We adopt the self-attention network with
multi-head attention proposed by [42] to aggregate all previous items’ embedding and fea-
tures’ embedding in auxiliary behavior sequence into ordered representation. For simplicity,
we define the whole self-attention mechanism as:

Os = SAN([hq; fq ]) (8)

We take the last dimension of Os as the final ordered representation, and t denotes t-th line
of matrices.

os = Ost (9)

4.5.3 Fusion

We argue that auxiliary sequences contribute differently when building an integrated rep-
resentation. For instance, some users who have no purchase purpose at first often click on
certain items randomly, and then suddenly find items want to buy. So the majority of click
item sequences generated in this way are not very helpful for the final purchase. Neverthe-
less, the large part of items clicked by users with the explicit purchase purpose are related
to next items to buy. Therefore, we should distinguish between the representation of tar-
get behavior sequence and the representation of auxiliary behavior sequence through gating
mechanism. To measure the respective importance of target and auxiliary behavior for the
final representation, we use the gating mechanism:

α = σ
(
Wg[p; q]) (10)

Then, we get the unordered representation of the current session through weighted summa-
tion.

ou = α · p + (1 − α) · q (11)

For the ordered representation os obtained from self-attention, we only consider auxiliary
sequences. Afterwards, we concatenate ordered and unordered representations and project
them into a fully-connected layer.

ous = [ou; os]Wus + bus (12)

where Wus ∈ R4l×l , bus ∈ Rl . ous is the final representation of session.

4.6 Objective function

In this section, we want to maximize the prediction probability of the actual next item
interacted with target behavior within the current session.

Therefore, we first calculate the recommendation score of each item m ∈ M through
current session representation ous and item representation em. Then softmax function is
applied to normalize scores over all items to get the probability distribution ŷ:

ŷ = softmax(o�
usWem) (13)
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Table 1 Basic statistics of the
datasets Dataset Yoochoose Tmall

#items 52740 569658

#sessions 201961 52379

#categories 339 6352

Average length of target 3.31 1.23

Average length of auxiliary 8.56 10.71

#training 163005 44876

#validation 12985 2501

#test 25971 5002

Then, we adopt the cross-entropy loss as the optimization objective function, which is
defined as:

L = −
m∑

i=1

yi log
(
ŷi

) + (1 − yi ) log
(
1 − ŷi

)
(14)

where y denotes the one-hot representation of the ground-truth item.

5 Experiment

In this section, we conduct extensive experiments on real-word datasets to answer the
following research questions:

RQ1 How does our proposed GNNH model perform compared with competitive baselines?
RQ2 How does feature information affect GNNH’s performance of the next item predic-

tion?
RQ3 How do different ways of fusion affect the recommendation performance of our

approach?

5.1 Datasets

We evaluate the proposed model on two real datasets, i.e., Yoochoose and Tmall. They con-
sist of user behavior records for e-commerce, which are frequently used in recommendation
studies. The statistical information of datasets are shown in Table 1.

• Yoochoose 1 It can be obtained from RecSys Challenge 2015, consisting of six months
of click and buy streams gathered from an e-commerce website. The user behav-
ior sequences in the dataset are already segmented into sessions and all users are
anonymized.

• Tmall 2 It is a publicly available dataset, which is based on transactional data provided
by Alibaba. It contains four types of behaviors that a user can take. In this paper, we
only take click and purchase for evaluation. According to the user behaviors recorded in
the platform lasting for one month, we need to split the dataset into sessions. Therefore,
we set a maximum time range one day for each session sequence and remove user
information.

1http://2015.recsyschallenge.com/challege.html
2https://tianchi.aliyun.com/competition

http://2015.recsyschallenge.com/challege.html
https://tianchi.aliyun.com/competition
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In both datasets, we treat buying behavior as the target behavior, and regard behavior of
click as the auxiliary behavior. The method of handling datasets is the same as [45]. Behav-
iors of each session are organized in a chronological order. We take the first 6/7 of datasets
as the training data, and use 1/3 of the remaining data as the validation data to determine
the optimal hyper-parameter settings. Therefore, we can obtain the sequences of target and
auxiliary behaviors that interact with items, and feature sequences can also be achieved
according to the item sequences. Here, feature refers to category because of the limitations
of datasets. To avoid the auxiliary input already sees the labels, we only keep the clicked
items before the target item that is also bought by the user. In addition, MRIG and MRFG
utilized throughout the experiments are constructed only based on sequences from training
data.

5.2 Baselines

To evaluate the performance of our proposed model GNNH, we choose state-of-the-art
and closely related work: (1) Traditional recommendation methods including POP and
Item-KNN. (2) RNN-based methods including GRU4Rec and NARM. (3) Attention-based
method STAMP. (4) Multi-behavior graph-based method MGNN and our extension to the
MGNN method MGNN+. They are briefly described as follows.

• POP: This baseline always recommends the most popular items based on occurrence
frequency in the training set.

• Item-KNN [29]: In the baseline, items similar to the existing items based on cosine
similarity are recommended.

• GRU4Rec [14]: It is an RNN based deep learning model for session-based recommen-
dation, which consists of GRU units.

• NARM [19]: It employs attention mechanism to capture main purpose from hid-
den states obtained by RNN and combines that with the sequential behavior as final
representation.

• STAMP [24]: This model captures a user’s general interest based on the long-term
memory of session context and the user’s current interest based on the short-term
memory of the last clicks in the session.

• MGNN [45]: It is a state-of-the-art multi-behavior session-based recommendation
model, which performs GNN onmulti-relational item graph to learn global item-to-item
relations.

• MGNN+: It is our extension of MGNN method, which replaces the input of original
model with combined vector of item and its features.

It is worth noting that the above baselines except MGNN and MGNN+ are designed for
single-behavior modeling. To make the comparsion more impartial, we revise these meth-
ods by modeling target behavior sequences and auxiliary behavior sequences of both items
and features respectively, and then fuse these four sequences with the proposed gating
mechanism as ours.

5.3 Evaluationmetrics

To evaluate the performance of each model, we apply three widely used common metrics,
i.e., Hit-ratio (H@K), Mean Reciprocal Rank (M@K) and Normalized Discounted Cumu-
lative Gain (N@K). H@K is the proportion of cases having the desired item amongst the
top-k items in all test cases. M@K is the average of reciprocal ranks of the desired items. It
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is equivalent to Mean Average Precision (MAP). N@K takes the position of correctly rec-
ommended items into consideration. In our experiments, we choose K = 100 to illustrate
different results of H@K, M@K and N@K.

5.4 Parameter settings

We implement our proposed model based on Tensorflow. The dimension of item and feature
embedding is set to 128 and both vectors are initialized with zero. We use dropout [38]
with drop ratio p = 0.2. For the hyper-parameters of the Adam optimizer, we also set the
default value. To speed up the training and converge quickly, GNN is ensured to run in
mini-batch size of 64, while the depth of GNN on item graph is set to 2 and the depth of
GNN on category graph is set to 1. In self-attention module, the number of blocks is set to
2 and number of heads is set to 2. All baselines are tested on different forms of attention
computation formulas for best results.

5.5 Performance comparsion (RQ1)

Table 2 shows the performance comparison between our model and the adopted baselines.
Comparing the performance of all methods over two datasets, we find that the results of
Yoochoose are generally better than Tmall. This may result from differences in data sparsity.

Firstly, the performances of traditional methods such as POP and Item-KNN are not
competitive. These results suggest the importance of taking the user’s behavior into
consideration in session-based recommendation tasks rather than solely basing on similarity.

Secondly, all of the neural network baselines significantly outperform conventional
models, proving the effectiveness of deep learning technology in this field. GRU4Rec,
NARM, and STAMP are standard sequential recommendation models for session, and their
performances are better than non-sequential models. This demonstrates the necessity of
considering sequential information in next item recommendation. Moreover, SR-GNN, GC-
SAN and HetGNN achieve better results than previous methods, because these methods
utilize the Graph Neural Network to learn high-order transition information. Different from

Table 2 Evaluation results of all methods

Method Yoochoose Tmall

H@100 M@100 N@100 H@100 M@100 N@100

POP 6.095 0.2529 1.2231 0.928 0.1074 0.3165

Item-KNN 15.286 1.9415 4.4040 1.861 0.1392 0.4381

GRU4Rec 19.340 2.5373 5.5919 2.447 0.1650 0.5382

NARM 18.835 2.5997 5.5975 2.392 0.1643 0.5484

STAMP 20.481 2.3516 5.6944 2.595 0.1647 0.5609

SR-GNN 21.383 2.6935 6.1397 2.637 0.1669 0.5750

GC-SAN 19.875 2.5719 5.6929 2.747 0.1811 0.5957

HetGNN 24.168 2.9956 6.8852 2.981 0.1834 0.6549

MGNN 28.632 3.6564 8.2722 3.114 0.1821 0.6617

MGNN+ 28.982 3.9470 8.5771 3.276 0.1894 0.6784

GNNH 29.138 4.5997 9.2342 3.409 0.2004 0.7583
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previous two method, HetGNN constructs a heterogeneous graph with multiple types of
nodes and edges, and further improves the performance.

Thirdly, MGNN is the best baseline of multi-behavior session-based recommendation,
which learns global item-to-item relations. However, this method doesn’t consider feature
transition and only models non-sequential patterns of user behaviors. To make the com-
parison fairer, MGNN+ improves the performance than MGNN by concatenating item
representations and feature representations together as input of graph, so we just perform
graph representation propagation on item graph, which is not the best method to consider
feature information.

Finally, regardless of the datasets and the evaluation metrics, our proposed GNNH
achieves the best performance. Compared with MGNN+, our method models both item-
level sequences and feature-level sequences, and additionally considers sequential patterns
of auxiliary behavior. This result shows the effectiveness of our GNNH model.

5.6 Impact of feature information (RQ2)

The paper [45] has already demonstrated that considering the auxiliary behavior in the
model indeed boosts the performance of session-based recommendation. In our GNNH
method, we further take multiple types of feature into consideration. However, due to the
limitation of available datasets, we simplify our proposed model with only a category fea-
ture. In the Table 3, methods with “w/o c” denote removing category information from the
full version. It is shown that our GNNH method still performs better than other models in
the setting. Moreover, by comparing each method in Table 2 with its “w/o c” version, we can
find that when category information is utilized, performance of each method improves in a
certain scale. This demonstrates that considering category information is indeed meaning-
ful. We could expect further improvements of performance if we consider more categorical
features and implicit features.

Furthermore, we want to test the impact of different depths of GNN, including both
depth settings on item graph and feature graph. From the Fig. 2, we can infer the effective-
ness of graph neural network module. When both depth values are 0, it means removing the
graph neural network module from our model, and replacing it with randomly initialized
item and feature embedding. We can see that the performance becomes significantly better
when depth of GNN on item graph grows from 1 to 2 and depth of GNN on feature graph
grows from 0 to 1, showing that it is indispensable to model high-order relations between
items and features through GNN. When the number of depth increases continually, the per-
formance would be worse since the representations of items and features might become less
distinguishable. We can also find out that the best value of item and feature is different.

Table 3 Results of not using category information

Method Yoochoose Tmall

H@100 M@100 N@100 H@100 M@100 N@100

GRU4Rec(w/o c) 19.114 2.5292 5.5830 2.423 0.1645 0.5281

NARM(w/o c) 18.775 2.5819 5.5813 2.266 0.1549 0.5387

SR-GNN(w/o c) 21.262 2.6892 6.1232 2.582 0.1596 0.5562

GNNH (w/o c) 28.815 4.2519 8.7829 3.214 0.1974 0.7123
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Fig. 2 Results of our model with different depths of GNN

This is due to the fact that the number of items is much larger than that of features, and
higher-order relations between features might be meaningless.

5.7 Impact of different ways of fusion (RQ3)

In this section, we conduct experiments to analyze the contribution of self-attention blocks
to the model. In the Fig. 3, using ‘mp’ denotes we only utilize mean-pooling, while using
‘mp + sa’ means we also consider self-attention simultaneously. Here, the datasets are
divided into several portions according to the length of auxiliary behavior sequences. From
Fig. 3, when the length of auxiliary behavior sequences is in the range from 3 to 5, the
improved effect of utilizing self-attention is insignificant since the representations of short
sequences can already be captured well by mean-pooling. However, the performance of
GNNH with self-attention module would be improved in a larger scale as the length of
auxiliary behavior sequences increases from 8 in the experiment on two datasets. This
demonstrates that self-attention module could extract more information of user’s current
interest because of assigning different importance weights to the items or features in long

Fig. 3 Results of our model with different ways of fusion



Geoinformatica

sequence. Moreover, we also try to test the fusion on target sequence. We can find that
simple mean-pooling can already achieve comparable performance while retaining low
complexity.

6 Conclusion

In this paper, we propose a novel graph neural network based hybrid model (GNNH), which
enables feature-level deeper representations of multi-behavior interaction sequences for
session-based recommendation. Specifically, we observe that user interactions in feature-
level also contribute to target behavior prediction. Therefore, we construct both MRIG and
MRFG and capture global item-to-item and feature-to-feature relations through GNN. In
addition, we also employ a seamless fusion of interacted item and feature representations to
obtain both sequential and non-sequential patterns. Finally, extensive experiments on two
real datasets show that our proposed method significantly outperforms the state-of-the-art
methods.
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