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Building Energy prediction has emerged as an active research area due to its potential in improving
energy efficiency in building energy management systems. Essentially, building energy prediction
belongs to the time series forecasting or regression problem, and data-driven methods have drawn more
attention recently due to their powerful ability to model complex relationships without expert knowl-
edge. Among those methods, artificial neural networks (ANNs) have proven to be one of the most suitable
and potential approaches with the rapid development of deep learning. This survey focuses on the studies
using ANNs for building energy prediction and provides a bibliometric analysis by selecting 324 related
publications in the recent five years. This survey is the first review article to summarize the details and
applications of twelve ANN architectures in building energy prediction. Moreover, we discuss three open
issues and main challenges in building energy prediction using ANNs regarding choosing ANN architec-
ture, improving prediction performance, and dealing with the lack of building energy data. This survey
aims at giving researchers a comprehensive introduction to ANNs for building energy prediction and
investigating the future research directions when they attempt to implement ANNs to predict building
energy demand or consumption.

� 2021 Published by Elsevier B.V.
1. Introduction

According to the International Energy Agency, the buildings and
buildings construction sectors combined are responsible for over
one-third of global final energy consumption and nearly 40% of
total direct and indirect CO2 emissions [1]. Due to the urbanization
process in the developing countries and the climate change, such
as global warming and extreme weather events, building energy
consumption will keep growing. To solve this problem, many
energy conservation measures during design have been proposed
to improve the energy efficiency of buildings, i.e. better building
envelope design [2], Meanwhile, with the rapid development of
the Internet of Things (IoT), the deployment of large-scale sensing,
big data analytics, and advanced control has been spurring the evo-
lution of buildings from simple to smart [3]. Much real-time build-
ing operation data is collected and processed in smart buildings, go
beyond measuring temperature and humidity to sensing air qual-
ity, light intensity, and occupancy information [4]. IoT technologies
would be another solution through implementing advanced strate-
gies to achieve energy-efficient buildings, including predictive and
occupant-centric control optimization for lighting systems and
heating, ventilation, and air-conditioning (HVAC) systems [5], ther-
mal energy storage strategy [6], renewable energy integration [7],
and smart grid management [8].
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Building energy prediction is not only an important evaluation
tool of energy-saving potential during building design and retrofit
but also an essential component of smart buildings, illustrated in
Fig. 1(a). The definition of building energy could refer to [9,10],
which has the characteristics of complexity, dynamics, and nonlin-
earity. Building energy could be divided roughly into cooling load,
heating load, hot water, lighting load, plug load, and overall elec-
tricity in terms of energy end-use, while they also could be divided
as residential, office, campus, industry, and commercial in terms of
building type. Common approaches to predict building energy per-
formance include physics-based method, hybrid method, and data-
Fig. 1. Illustration showing (a) the focus of this review article within the dom
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driven method. Among those approaches, the data-driven method
has attracted more and more attention in recent years because it is
less time-consuming, no requirements of expertise knowledge,
easy-deployed in practice and could obtain more accurate predic-
tion performance.

The data-driven method could be considered as a black box,
ignoring the internal detailed relationships of the heat and mass
transferring in buildings. As large amounts of smart meters are
deployed and increasing amounts of data are collected, it becomes
possible to learn the pattern of building energy through some
advanced and complicated data-driven models in practice. Build-
ain of building energy systems, (b) The framework of this review article.
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ing energy prediction is essentially a time series forecasting prob-
lem, which is the process of predicting or judging future phenom-
ena by analyzing some series of historical observation data
arranged in chronological order [11,12]. The data-driven method
to predict building energy could be univariate or multivariate
based on the number of series used in forecasting [12]. In the uni-
variate prediction, an appropriate model depends on carefully ana-
lyzing historical energy consumption, and then the model is used
to predict the future values of energy consumption. While in the
multivariate prediction, in addition to the energy consumption ser-
ies, the model is developed by values of one or more additional
time series, called the energy-related features. Those features
should be related to energy consumption and could help improve
the prediction performance [10], including meteorological infor-
mation (such as ambient temperature, humidity, wind speed, solar
radiation, etc.), indoor environmental information (such as indoor
temperature, indoor humidity, etc.), occupancy information (such
as the number of occupants and type of occupant behaviors, etc.)
and time index (such as hour of the day, weekday or weekend,
etc.). There are some other related features used to enhance the
prediction performance, including building characteristic data
(such as surface area, roof area, wall area, glazing area, window-
wall ratio, heat transfer coefficient of building envelopes, etc.)
and socioeconomic information (such as income, electricity price,
GDP, etc.).

The early data-driven method was mainly statistical models,
such as Multiple linear regression (MLR) [13], Gaussian process
regression (GPR). Exponential smoothening, and Autoregressive
integrated moving average (ARIMA) [14]. The statistical models
do well for modeling stationary and linear series, while they may
perform poorly when dealing with time series with stochastic
behavior like building energy data. Nowadays, machine learning
models are a more popular option for building energy prediction,
such as Regression tree [15], Random forest (RF) [15,16], Support
vector regression (SVR) [17,18,19], Artificial neural networks
(ANNs), and some ensemble models [20,21]. Among those machine
learning models in the existing studies, ANN is used more fre-
quently in building energy prediction [22]. Furthermore, with the
rapid development of deep learning, ANNs are considered as the
model with great potential for accurate energy prediction
[23,24]. ANNs are a type of intelligent information processing
method inspired by the biological neural network, which is advan-
tageous in the strong ability to represent and model the nonlinear
relationships between inputs and outputs.

In particular, many ANN architectures have been applied in
building energy prediction, which is generally divided into three
main categories, shown in Fig. 1(b). In Feedforward neural net-
works (FFNNs), signals are transmitted through connections from
the input layer to the output layer, passing through neurons in
one or more hidden layers with no memory or feedback connec-
tions [25]. Multilayer perceptron (MLP), Radial basis function
(RBF) networks, Extreme learning machine (ELM), and Wavelet
neural network (WNN) belong to main types of popular FFNN.
In Recurrent neural networks (RNNs), connections between layers
form a cycle that creates an internal state in the network which
exhibits dynamic temporal behavior [26], including nonlinear
autoregressive neural network with exogenous inputs (NARX),
Elman neural network (ENN), Long short-term memory (LSTM),
Gated recurrent unit (GRU), Echo state network (ESN), and
Restricted Boltzmann machine (RBM). In Convolutional neural
networks (CNNs), there are two fundamental operations, convolu-
tion and pooling, to extract features automatically. The details of
these three architectures (twelve types) and in building energy
prediction will be reviewed and some improvement approaches
of ANNs prediction performance also will be summarized in this
survey.
3

1.1. Relevant review articles

Data-driven building energy prediction has drawn more atten-
tion and there have been many relevant review articles published
in the last few years. Note that these review articles are either dif-
ferent from the scope of this article or not as comprehensive and
up-to-date as this survey. Sun et al. [10] summarized the general
procedure for data-driven building energy prediction and intro-
duced the updating strategies for multi-step building energy pre-
diction. The properties, the uses, and the limitations of existing
building energy datasets and data collection platforms were com-
pared in [27]. Various data-driven models and ensemble methods
for building energy prediction were reviewed in
[9,28,29,30,31,32]. Amasyali et al. [30] further discussed different
models in terms of different temporal granularities, building types,
and energy consumption types. Wei et al. [32] demonstrated the
practical applications of data-driven models in building energy
analysis and provided instructive suggestions for different users
throughout the whole building life cycle. The key application areas
of meter data in the smart grid (including buildings) were dis-
cussed in [33]. Especially, Roman et al. [34] gave a general insight
of ANNs applied in building energy prediction, including different
cases, sample generation, architectures, and training and testing
processes. Mohandes et al. [35] reviewed several applications uti-
lizing ANNs in building energy analysis. Table 1 concludes the
ANN types mentioned in those review articles and we can find
two research gaps. First, most review articles did not introduce
ANN types comprehensively, failing to present the important trend
of choosing ANN architectures or types in building energy predic-
tion in the recent years. Second, no review article introduces the
building energy applications of different ANN architectures in
detail and can give effective guidance to choose suitable ANN
architectures or types.

1.2. Objectives and review structure

In this article, we aim at conducting a comprehensive literature
survey of building energy prediction using ANN, the method most
favored by researchers in recent years. The focus of this survey
within the domain of building energy systems is illustrated in
Fig. 1(a). To be specific, the objectives include (1) providing a sys-
tematic literature survey in the past five years and an analysis to
show the research trends of ANN applications in building energy
prediction; (2) introducing various ANN architectures and types
applied in building energy prediction; (3) analyzing the obstacles
in current research and investigate the future research directions
for researchers.

The main contributions of this survey can be summarized as fol-
lows: (1) Show the rising attention on ANNs, especially RNNs, in
building energy prediction through a comprehensive bibliometric
analysis in the past five years. The research trend and the journal
distribution also are presented in detail. (2) Introduce three main
architectures (twelve types) of ANNs and illustrate how the related
studies apply them to predict building energy performance. (3)
Discuss the strategies to solve three following obstacles when pre-
dicting building energy performance using ANNs: i. How to choose
suitable ANN architecture for building energy prediction. ii. How to
improve the performance of ANNs for building energy prediction.
iii. How to deal with the lack of energy training data.

As shown in Fig. 1(b), the paper will be organized as follows:
Section 2 conducts a comprehensive bibliometric analysis about
building energy prediction using ANN. Section 3 provides introduc-
tions of various ANN architectures and types, and their applica-
tions in different building cases. Section 4 provides some
suggestions and recommendations regarding choosing ANN archi-
tecture. Section 5 concludes some improvement measures pro-



Table 1
Summary of ANN architectures mentioned in the relevant review articles.

Reference Year ANN architectures

MLP RBF ELM WNN NARX ENN RNN LSTM GRU ESN RBM CNN

[28] 2017
p p p p

[29] 2017
p p

[32] 2018
p p

[30] 2018
p p

[30] 2018
p p p

[31] 2019
p p p p p

[35] 2019
p p p p

[36] 2019
p p p p

[34] 2020
p p p p

[22] 2020
p

[10] 2020
p p p
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posed for ANN applications in building energy prediction in the
existing studies. Section 6 discusses two promising techniques
for solving the lack of energy data. The conclusion of this literature
survey is given in Section 7.
2. Bibliometric analysis in building energy prediction using
ANNs

In this section, we will provide a comprehensive overview of the
existing studies in building energy prediction using ANNs. The Pre-
ferred Reporting Items for Systematic Reviews and Meta-Analyses
(PRISMA) methodology was applied for the survey, which is a
framework to guide systematic reviews and meta-analyses [37].
Fig. 2. The PRISMA flow
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The related publications were found in Web of Science, a well-
established and acknowledged database, using the search strings
(such as building energy prediction/forecasting, building load pre-
diction/forecasting, building electricity prediction/forecasting, and
ANN). We chose these publications in English published between
2016 and 2020. The PRISMA flowchart of this review is shown in
Fig. 2. A total of 2154 publications were obtained at first, and
324 publications were selected and included at last through
screening and eligibility examination.

Fig. 3 shows the number of publications and the times cited
from 2016 to 2020. The number of publications was at a relatively
low level before 2017, while it has been increasing rapidly since
2018 and there were up to 100 studies published in 2020. This
result is reasonable because deep learning has been rapidly devel-
chart of this survey.



Fig. 3. The number of publications and their times cited in building energy
prediction using ANN per year.
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oped and applied in many research fields. In summary, researchers
have paid more and more attention on building energy prediction
using ANNs.

The selected publications include 275 journal articles and the
follow-up literature survey mainly focuses on these journal arti-
cles. It is important for the interested researchers to know where
they can publish their findings. Table 2 depicts the journals of
the selected publications ranked by percentages. The journals in
the fields of energy engineering and building engineering account
for the majority and Energy and Buildings, Energy, Energies, and
Applied Energy are the top 4 most popular journals. The journals
in the fields of automation and computer engineering also appear,
such as IEEE Access, Engineering with Computers, Applied Soft Com-
puting, and Automation in Construction. The journals in the field of
power systems also appear, such as IEEE Transactions on Smart Grid.
The phenomenon occurs because building energy prediction is a
cross-discipline and an important component of smart buildings
and smart energy systems, attracting researchers from various
fields.
3. ANN architectures in building energy prediction

In this section, we start by describing the general definition and
formulation of building energy prediction for ease to understand,
and a brief introduction on training and testing of ANNs is pre-
sented. Then, we present the taxonomy of the different ANNs
and describe in detail the thirteen different ANN architectures
Table 2
Distribution of the journal articles on building energy prediction using ANN.

Ranking Journal Title Number Percentage(%)

1 Energy and Buildings 43 15.64
2 Energy 34 12.36
3 Energies 29 10.55
4 Applied Energy 26 9.45
6 IEEE Access 12 4.36
6 Sustainable Cites and Society 11 4.00
8 Applied Science Basel 7 2.55
8 Building Simulation 7 2.55
10 Applied Thermal Engineering 5 1.82
11 Engineering with Computers 4 1.45
11 IEEE Transactions on Smart Grid 4 1.45
11 Sustainability 4 1.45
14 Applied Soft Computing 3 1.09
14 Journal of Building Engineering 3 1.09
14 Renewable Energy 3 1.09
14 Renewable sustainable energy reviews 3 1.09
14 Automation in Construction 3 1.09
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and their building energy applications in the selected journal
articles.

3.1. Theoretical background

First, the general definition and formulation of building energy
prediction will be displayed. For the univariate prediction, a histor-
ical series of building energy, X0 ¼ ½x1; x2; � � � ; xT�1�, is given, and for
the multivariate prediction, a M�dimensional series,
X ¼ ½X0;X1; � � � ;XM�1�, is given and consists of one historical series
of building energy and M�1 additional energy-related feature ser-
ies. Building energy prediction is mainly a time series regression
problem, which is to learn a nonlinear mapping function [38] to
obtain the predicted energy value Y. There could be a
datasetD ¼ X1;Y1ð Þ; X2;Y2ð Þ; � � � ; XN;YNð Þf g, as a collection of
pairs Xi;Yið Þ, where Xi could either be a univariate or multivariate
series and usually would be preprocessed by the sliding window
[39], and Yi could be more than one value for multi-step building
energy prediction [10].

The ANNs for building energy prediction are designed to learn
hierarchical representations of energy data, which could be com-
plex machine learning models when adding more layers, so-
called deep learning [40]. A general ANN could be considered as
a composition of L mapping functions, so-called layers, which is a
representation of the input domain [41]. The mapping function is
controlled by a set of parameters hl for each layer, so-called
weights and bias. Given an input � , the general computation
would be performed in ANNs [42], so-called feedforward propaga-
tion, as the following:

rL hL; xð Þ ¼ rL�1ðhL�1;rL�2 hL�2; � � � ;r1 h1; xð Þð Þ ð1Þ
where rj is the nonlinearity or activation function applied in layer j,
and hj is the vector of parameters in layer j, such as weights and
biases.

During the training phase, ANNs would be trained with a cer-
tain number of known input–output pairs. After the weights in
ANNs are usually initialized randomly, a feedforward propagation
would be implemented, and the prediction loss would be com-
puted by a cost function, i.e. mean absolute error or mean square
error for the regression problem [43,44]. Then, the weights would
be updated in a backpropagation using gradient descent. The train-
ing phases iteratively take a feedforward propagation followed by
a backpropagation to update the parameters of the ANNs to mini-
mize the loss on the training data [45]. During the test phase, the
ANNs would be tested on unseen data and compute the prediction
error to measure the generalization ability.

In the following subsections, a detailed survey from the selected
publications will be grouped by different ANN architectures
applied in building energy prediction, whose taxonomy refers to
[25,46], including FFNN, RNN, and CNN.

3.2. Feed forward neural networks

Fig. 4 illustrates the general architecture of FFNNs. MLP is the
simplest and the most widely used type of FFNNs, which is also
known as a fully-connected networks. The general formulation of
MLP is shown as the following:

Hl ¼ rðwlX þ blÞ ð2Þ
wherew and b is the weights and bias respectively, H is the activa-
tion or output of the neurons, and r is the activation function,
which usually is the sigmoid function to squashes inputs to a [0,1]
range in MLP [44,47] as the following:

r zð Þ ¼ 1
1þ e�z

ð3Þ



Fig. 4. The general architecture of FFNNs.

Fig. 5. The general architecture of RNNs.
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MLP often appears in building energy prediction as the bench
model, and has certain advantages when compared to other
machine learning models. Gunay et al. [48] found the a single hid-
den layer MLP could outperform better than MLR in characterizing
the heating and cooling load pattern with one-hour history of
weather and electricity load. Ahmad et al. [47] compared MLP with
tree-based models and the results indicated MLP performed mar-
ginally better for hourly electricity consumption. Magalhaes et al.
[43] concluded MLP could estimate effectively the heat energy
use both at an individual and the buildings stock level. Seyedzadeh
[49] found MLP would be more appropriate for building load pre-
diction when the data was complex and abundant.

RBF is a type of FFNNs with single hidden layer which is used to
map the input data to the network space using a radial basis func-
tion. The general formulation of RBF is as the following:

y ¼
XN

j
wjuj kx� v jk

� �þ b ð4Þ

where v j is the jth center location of the RBF nodes, k � k is the Eucli-
dean distance andu is the radial basis function which usually is the
Gaussian function as the following:

uj xð Þ ¼ exp � x� v j
� �2
2rj

2

 !
ð5Þ

In which r is the width parameters of the RBF nodes. Due to the
structure simplicity, the adaptation of two typical-stage training
schemes and fewer control parameters, RBF has an easier and
shorter training phase and has good generalization [50,51]. Tran
et al. [52] developed an ensemble model based on the RBF and
the least-square SVR to prediction energy consumption in resi-
dence buildings. They utilized an optimization technique, symbi-
otic organisms search, to automatically optimize the number of
hidden neurons and the width of Gaussian function. The ensemble
model was proven as the most effective model.

Considering the slow gradient learning and massive parameters
to be learned of traditional FFNNs, ELM is proposed as a modifica-
tion of a single hidden layer FFNN to provide good generalization
performance at extremely fast learning speed, which solves the
drawbacks caused by gradient descent algorithms [53]. The key
principle behind ELM is that input weights and biases are ran-
domly generated and should not be tuned in the training phase
[53]. Thus, training the ELM could transfer to solve a linear system
and the output weights could be calculated as the following:

b ¼ HþY ð6Þ
where Hþ is the Moore-Penrose generalized inverse of the output
matrix H of the hidden layer, which can be calculated when HþH
6

is non-singular and Hþ ¼ ðHTHÞ�1
HT . Guo et al. [54] found the per-

formances of the ELM were better than multiple linear regression,
the SVR and the MLP for predicting demand in the building heating
systems. Sekhar et al. [55] tried a hybrid model of the multivariate
adaptive regression splines and the ELM for heating load prediction,
which boosted the performance and outperformed GPR, MLR, MLP
and RBF. Song et al. [56] proposed a framework by a two-step evo-
lutionary algorithm, called evolutionary model construction, for
channel selection, feature extraction and prediction in accurate
electricity consumption prediction. The implementation of the
framework chose the particle swarm optimization (PSO) with the
ELM and the random vector functional link and the superiority of
the framework was proven by comparison with the existing
approaches. Naji et al. [57] used the ELM and genetic programming
to estimate building energy consumption with five different wall
details with various layer thicknesses in the design phase. Consider-
ing the situation where all the load data is not available in buildings,
Kumar et al. [58] applied online sequential ELM to learn in chunk by
chunk from recent examples and they improved the feature selec-
tion by combining the PSO [59]. Fayaz et al. [60] used the deep
ELM for energy consumption prediction in residential buildings
and its performance was far better than ANFIS and MLP.

WNN is a type of FFNN combining the wavelet theory and
ANNs. In WNN, the transfer function is the wavelet basis function
and the output of the hidden layer is calculated as the following:

h ¼ /ð
Pk

i¼1wix� b
a

Þ ð7Þ

/ðzÞ ¼ cosð1:75zÞe�z2=2 ð8Þ
where / is the wavelet basis function, a and b are the scaling factor
and translation factor of the wavelet basis function, respectively. Gu
et al. [61] found the WNN could obtain smaller relative error when
predicting medium-term (one day ahead) heating load for an exist-
ing residential building. Yuan et al. [62] developed a hybrid load
forecasting engine for commercial buildings, combining the singu-
lar spectrum analysis and WNN, and used the cuckoo search for
parameter tuning of WNN.

3.3. Recurrent neural networks

Fig. 5 illustrate of the general architecture of RNNs. RNNs are
often employed for modeling time-series data due to their strength
in modeling dependencies across time. They have been success-
fully applied to temporal dependency extraction and complex
sequence modeling, showing effectiveness in many research fields,
such as neural language processing [63] and video action recogni-
tion [64]. The general formulation of RNN (Vanilla RNN) is as
follows.

ht ¼ r WxX þWhht�1 þ bð Þ ð7Þ
where ht is the hidden state at time step t.
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The nonlinear autoregressive (NAR) and the nonlinear autore-
gressive neural network with exogenous inputs (NARX) could be
considered as the basic types of RNNs, and the architecture of
NARX is shown in Fig. 6. NAR makes final prediction only using
the historical values, so-called time delays, and NARX includes
another external series that may provide additional useful infor-
mation. Ruiz et al. [65] used NAR and NARX for energy prediction
in an university buildings. The result showed the prediction accu-
racy of NAR and NARX were both suitable. Due to adding the tem-
perature as the exogenous input, NARX furnished a better
performance, and decreased the network complexity and the
amount of historical data. Kim et al. [66] also found NARX worked
better than ARIMA and the exponential model for 1 h to 1 day
ahead forecasting in an institutional building. Koschwitz et al.
[67] predicted long-term urban heating load using NARX based
on building retrofit effects.

Elman Neural Network (ENN) is another simple type of RNNs,
which introduces the concept of memory [68]. In ENN, the output
of the hidden layer in the previous time step is fed back as an input
to the hidden layer in the current time step, shown in Fig. 7, which
provides a better modelling of time-series with historical depen-
dencies. The main difference between NARX and ENN is that there
are the context units to store the state or output of hidden neurons.
Ma et al. [69] employed an ENN to analyze the impacts of direct
solar irradiance and wind speed on heat demand prediction in Fin-
land. The results showed the ENN with a sliding window of 4 h and
Fig. 6. The architecture of NARX.

Fig. 7. The architecture of ENN.
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a number of layers of 8 could achieved the lowest MAPE of the pre-
dictions and Simultaneous involvement of both wind speed and
direct solar irradiance performed the best. Bedi et al. [70] predicted
the electric energy consumption along with the ambient tempera-
ture and the occupancy state, which showed the ENN model out-
performed the exponential model on six out of seven days of
electric energy consumption predictions. Ruiz et al. [71] used the
genetic algorithm for optimizing the weight of the ENN to solve
the disadvantages of slow convergence and local minimum stagna-
tion, which showed an improvement in the accuracy of energy con-
sumption forecasting for public buildings of University of Granada.

LSTM is a special form of RNN, designed for handling long
sequential data. The memory block of LSTM is shown in Fig. 8.
LSTM contains three gates: the forget gate, the input gate, and
the output gate denoted as f, i, and o respectively. The three gates
could learn when to forget previous information and how to
update them using new information [72], which helps solve the
problem of a vanishing or exploding gradient when the number
of time steps is large. Wang et al. [73] applied LSTM using occu-
pancy and time index to predict the plug load, which was found
to perform better than ARIMA approach. Moreover, they recom-
mended LSTM for short-term (1 h ahead) cooling load prediction
of a campus building with weather forecasting [74], which showed
20.2% in the coefficient of variation of the root mean square error
(CVRMSE) and outperformed other statistical models and machine
learning models. Somu et al. [39] applied the improved sine cosine
optimization algorithm to identify the optimal hyperparameters of
LSTM in real time for accurate and robust building energy con-
sumption forecasting. Rahman et al. [75] found LSTM could be
comparatively more accurate than MLP in predicting heating
demand.

GRU is a popular variant of LSTM, which offers a simpler struc-
ture and might show better performance than the original LSTM in
some cases. In GRU, the forget gate and input gate are replaced by a
reset gate and an update gate, denoted as r and z respectively,
whose memory block is shown in Fig. 9. Zhang et al. [76] utilized
LSTM and GRU to extract features from raw load data in a public
building, and utilized MLP to learn the relationships in the features
extracted, which found GRU had greater potential than LSTM in
building energy prediction. Wen et al. [77] used a deep GRU to
investigate the load prediction of residence buildings over the
short to medium-term, which achieved higher accuracy compared
to LSTM and other conventional models.

The RNN architectures would also influence the performance of
building energy prediction [78,79]. In general, there are three pop-
ular RNN architectures for time series prediction, including the
direct architecture, the recursive architecture and the multi-input
and multi-output architecture [80]. Considering the standard
recurrent architectures are not naturally suited to model relation-
Fig. 8. The memory block of LSTM.



Fig. 9. The memory block of GRU.
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ships between input and output sequences whose lengths are dif-
ferent, the sequence-to-sequence (Seq2Seq) model are used to
address the problem. Skomski et al. [81] applied a Seq2Seq LSTM
model to predict short-term electrical load in four office buildings
and investigated the impacts of the time resolutions, the amount of
training data available and the lengths of the input and the output
sequences. The Seq2Seq LSTM model was effective. Furthermore,
the transferability of the model across different buildings was con-
sidered and the results showed it was highly dependent on build-
ing pairs. Attentionmechanismwas design to help remember long-
term input history and especially paid attention to those critical
input. Chitalia et al. [39] combined LSTM and bidirectional LSTM
(BiLSTM) with attention to predict five commercial buildings.
Sehovac et al. [82] proposed a Seq2Seq RNN with two main differ-
ent attention mechanisms for load prediction, which were named
Bahdanau attention [83] and Luong attention [84] respectively.
They found the Seq2Seq RNN with Bahdanau attention outper-
formed the other models.

Echo State Network (ESN) is another type of RNNs with power-
ful nonlinear time series modeling ability, which has the advan-
tages of fast convergence and global optimal solution [85,86].
The ESN generally comprises an input layer, a dynamic reservoir
and an output layer, shown in Fig. 10. The dynamic reservoir con-
tains several sparsely connected neurons and the output layer is a
memoryless linear readout trained to generate the output. Shi et al.
[87] developed the ESN with several topologies to predict the
energy consumption in different room types of an office building,
showing the excellent performance. Mansoor et al. [88] compared
the ESN and the FFNN, and the ESN performed slightly better than
the FFNN in the zone-based analysis, but conversely in the cluster-
Fig. 10. The architecture of ESN.
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based analysis. Wang et al. [89] improved the ESN for electricity
consumption forecasting by using the differential evolution algo-
rithm (ESN-DE) to search optimal value of three crucial parameters
in the ESN, including the scale of the reservoir, the connectivity
rate among the neurons of the reservoir and the spectral radius.
The results showed the ESN-DE outperformed the traditional
ESN. Hu et al. [90] developed a deep ESN with a stacked hierarchy
of reservoirs, which outperformed the persistence model, the MLP
and the traditional ESN for forecasting energy consumption and
wind power generation. Then, they continued proposing an model
combing ESN, bagging and differential evolution algorithm, and
achieved better performance in accuracy and reliability [91].

Restricted Boltzmann Machine (RBM) is a generative stochastic
bool ANN to learn a probability distribution over its set of inputs
and is trained by minimizing a pre-defined energy function to learn
an equilibrium from the visible layer to the hidden layer, whose
architecture is shown in Fig. 11. The RBM could be considered as
a type of RNN. Fu [92] established an ensemble model of empirical
mode decomposition and deep belief network (DBN) to forecast
cooling load, which could be view as a stack of several RBMs. The
model exhibited competitive performance. Hafeez et al. [93] pro-
posed a novel short-term electric load forecasting model based
on factored conditional RBM using modified mutual information
to preprocess data and genetic wind-driven algorithm to optimize.
The factored conditional RBM had a rich, distributed hidden state
to help in preserving the temporal information in the electric data,
and it prevented the vanishing gradient issue in back propagation.
3.4. Convolutional neural networks

CNN is originally invented for image processing, but it also has
been proven effective in the time-series problems [94]. CNN has
two basic operations, convolution and pooling. The convolution
could be seen a sliding filter over the energy series, which usually
exhibits one-dimension, so-called 1D CNN. The pooling, such as
average and max, could reduce the length of input series by aggre-
gating over a sliding window [42]. Sadaei et al. [95] proposed a
combined model of CNN and fuzzy time series for short-term load
forecasting. The fuzzy time series was applied to convert the orig-
inal input series to the format of images in the input layer of CNN.
Cai et al. [96] developed a gated CNN for day-ahead building-level
load forecasts. The gate CNN introduced a novel gating mechanism,
where each input was processed simultaneously using two differ-
ent convolutional operations for detecting the temporal depen-
dency of the neighboring time stamps and identifying the
weather correlation at each time stamp respectively. The results
indicated the gate CNN outperformed other models from all the
Fig. 11. The architecture of RBM.
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aspects of prediction accuracy, computational efficiency and
generalizability.

It is more common that CNN is generally as feature extraction
layers for other machine learning models. The hybrid models of
CNN and RNN are the most common combination for building
energy prediction [97,79,97,98], where CNN could obtain the local
and spatial features and the features would be fed into RNN to cap-
ture the temporal dependencies in the time series [99]. Chitalia
et al. [39] used the CNN-LSTM model and CNN-BiLSTM model to
predict electric load. They also used the ConvLSTMmodel and Con-
vBiLSTM model that were when gates performed convolutions in
LSTM and BiLSTM respectively [100]. Sajjad et al. [98] developed
a hybrid model incorporating CNN with GRU and achieved better
performance in terms of preciseness and efficiency. Another popu-
lar way to combine CNN and RNN is based on the inception module
[101]. Kim et al. [67] proposed a recurrent inception CNN for short-
term load forecasting that combined LSTM and one-dimensional
CNN, where the CNN could calibrate the hidden state vector values
generated from LSTM. The result showed the proposed model
could yield better forecasting than MLP, CNN and RNN.
4. How to choose suitable ANN architectures for building energy
prediction

In the last section, we have illustrated the ability and applica-
tions of the twelve ANN architectures in the literature. However,
the various implementation and different performance results
exist in those literature so that choosing the suitable ANN architec-
ture for better building energy prediction is still an open issue for
researchers. In this section, we will provide some overall statistics
and summarize some notable observations about the current state
and research trend about building energy prediction using ANNs,
which is meant to recommend ANN architectures in practice for
new researchers.

The research trends of different ANN architectures in building
energy prediction could be explored in Fig. 12, which shows the
number of journal articles based on different ANN architectures
in building energy prediction. First, the number of journal articles
based on FFNNs accounts for the majority of every year and still
increases. Second, the proportion of journal articles based on RNNs
has rapidly increased since 2017, which is 17.39% and 40.4% in
2017 and 2020 respectively. Third, the number of journal articles
where CNN is dominant in structures are rare and only 2 and 1
publications in 2019 and 2020 respectively.
Fig. 12. The number of journal articles based on different ANN architectures in
building energy prediction per year.
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Overall, FFNNs still is the most popular choice in building
energy prediction because they are easy to implement. But FFNNs
don’t have the ability to sequence modeling, so they process the
relationship between energy-related features and building energy
data in most studies. Careful feature engineering is usually
required to determine the inputs before FFNNs model. Taking his-
torical energy data as inputs is proven to improve prediction per-
formance. The lag and number of historical energy data also need
to be determined by feature engineering.

Most building energy data includes time-dependent compo-
nents, so naturally, RNNs have been becoming another preferred
choice of most researchers for building energy prediction. Different
from FFNNs, RNNs usually can process directly the building energy
data and learn the historical information by themselves. Fig. 13
provides the distribution of RNNs in our selected studies. LSTM
has attracted the most attention among all RNNs with 42 journal
articles (account for 48.93%). It means LSTM is dominant in ANN
structures or LSTM outperforms other models in these 42 articles.
NAR/NARX, as the basic RNN model, has 13 journal articles (ac-
count for 15.15%). Hence, it is clear that LSTM is the most popular
RNNmodel and should be recommended at least for benchmarking
in building energy prediction currently.

CNN is also a potential choice for building energy prediction.
There exists 1D CNN proposed to process time series, including
building energy prediction. A common and effective practice is rec-
ommended to combine CNN and RNN (CNN-RNN). In CNN-RNN,
convolution and pooling layers were used to capture effective fea-
tures and reduce the problem dimensionally while greatly sup-
pressing the redundancy in representations of fine-grained
building energy data. RNN can capture temporal dependency from
the output of CNN. At least, CNN-RNN is also worthy as another
baseline model for comparison. It is worth mentioning that CNN
is widely applied for image recognition applications. Hence, it
should be more attempted to convert the building energy data into
an image-like two-dimensional representation in an innovative
way as the input of CNN.

How to choose a suitable ANN architecture for a specific build-
ing energy prediction task is still an open issue. One of the future
directions is to attempt more advanced ANN architectures for bet-
ter building energy prediction. Customization of ANN architectures
could always be effective for improving prediction performance.
Furthermore, researchers should explore and summarize whether
there exists the general or suitable ANN architecture when dealing
with different building energy prediction tasks, which may involve
the interpretability of ANN.
Fig. 13. The distribution of journal articles based on different RNNs.
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5. How to improve performance of ANNs for building energy
prediction

In this section, we will introduce how to improve performance
of building energy prediction with precision and stability when
implementing ANNs in the existing studies.

Implementing ANNs in building energy prediction always
encounter three main problems. The first is that ANNs initialize
randomly and easily result in the local optimal problem and the
unstable performance during the training phase [102], so weights
and biases need to be updated more reasonably. The second is
the input selection problem because it is hard to decide inputs
for ANNs [56,103], such as the number of energy-related features
and the length of historical energy values. The third is the hyperpa-
rameters setting problem, which is a tedious and time-consuming
task in deep learning especially. The hyperparameters will impact
the prediction performance and need to be optimally determined
[103,104], such as the number of layers, neurons, and epochs,
and the type of optimizers and activation functions. To overcome
these problems, three types of parameters need to be optimized
for ANNs in building energy prediction, including weights and
biases, input features and hyperparameters respectively.

In our selected studies, meta-heuristic algorithms are widely
utilized and proven effective solutions for those problems, improv-
ing the reliability of ANNs and helping achieve the best prediction
performance. Meta-heuristic algorithms could try to evading many
local minima or conduct global search to decide the parameters. A
summary of the optimization algorithms for ANNs in building
energy prediction is shown in Table 3. Most meta-heuristic algo-
rithms are inspired by the observation of natural behaviors, which
could be classified into four categories [114], including
evolutionary-based, physical or mathematic-based, human-based
and swarm intelligence-based. The evolutionary-based algorithms
are inspired by the biological evolutionary, including evolutionary
algorithms (EA), differential evolution (DE), and genetic algorithm
(GA). The human-based algorithms are inspired from behaviors of
human beings, including sine cosine optimization algorithm
(SCOA), imperialist competitive algorithm (ICA) and teaching–
learning-based optimization (TLBO). The swarm intelligence-
based algorithms are inspired by the communities in herds of ani-
mals, colonies of insects and flocks of birds, including particle
swarm optimization (PSO) algorithm, bat algorithm (BA), artificial
Table 3
The summary of the optimization algorithms for ANNs in building energy prediction.

Reference ANN
architectures

Optimization
Algorithms

Parameters to be
optimized

[105] MLP GA Input features
[61] MLP GA Weights and biases
[17] MLP GA, ICA Input features,

Hyperparameters
[102] MLP ABC, GA, PSO, ICA Weights and biases
[106] MLP GA Hyperparameters
[107] MLP ABC, PSO Weights and biases
[108] MLP EA Hyperparameters
[109] MLP TLBO, CS Weights and biases
[52] RBF SOS Weights and biases
[56] ELM PSO Input features
[110] ELM Bat algorithm Hyperparameters
[62] WNN CS Weights and biases
[71] ENN GA Weights and biases
[111] ENN DA Weights and biases
[39] LSTM SCOA Hyperparameters
[103] LSTM GA, PSO Input features,

Hyperparameters
[104] LSTM GA Hyperparameters
[89] ESN DE Hyperparameters
[112] ESN FFOA Input features
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bee colony (ABC) algorithm, cuckoo search (CS), symbiotic organ-
ism search (SOS), fruit fly optimization algorithm (FFOA), and drag-
onfly algorithm (DA). We summarize briefly the advantages and
disadvantages of the mentioned optimization algorithms according
to our selected studies in Table 4. Regarding optimization algo-
rithms, more details and options can refer to [114–116]. For the
interested researchers, it is important to know that every algo-
rithm is essentially designed to expand the search space to obtain
an optimal solution for different parameters of ANNs. In terms of
prediction performance and computational time, there does not
exist a general algorithm for all types of real-world problems,
which motivates researchers to modify the existing algorithms or
develop new algorithms for their own problems and needs.

Another approach to improve the predictive performance that
should be mentioned is online learning strategies. Most of our
selected studies belong to the conventional offline learning, which
belongs to the batch learning strategy using a static data set and if
dealing with the new data, ANNs need to be re-trained. If the pat-
tern changes in the new energy data, ANNs using offline learning
would cause degrading predictive performance. Building energy
data usually is generated as a data stream in practice, and online
learning strategies would dynamically adapt to new patterns in
the data stream and adopt different architecture and parameters.
The data could be discarded after they are learned. Fekri et al.
[115] proposed online adaptive RNN, which adopted online pre-
processing techniques to prepare data for the RNN model and
adjusted hyperparameters (learning rate) when the predictive per-
formance started to deteriorate. The online adaptive RNN not only
outperformed the other online model and the offline RNN but also
reduced the training time significantly compared to the offline
RNN.

The future research directions include developing hybrid mod-
els to obtain better performance, which should combine ANNs and
suitable optimization algorithms, and implementing the online
learning strategies in practice. The hybrid models would either
achieve the outperforming results or avoid massive manual param-
eters tuning of complex ANNs by trial-and-error effectively. The
online learning strategies would reduce the computational time
and adapt to the new pattern in the energy data stream.
6. How to deal with the lack of energy training data

In this section, we will discuss another challenge in building
energy prediction, how to deal with the lack of energy training data
when implementing ANNs. Although lots of advanced and complex
ANN architectures have been successfully applied and achieved
more andmore precise prediction, the ANNs rely on a large amount
of historical energy data as the training data. The challenge is that
most buildings cannot provide sufficient energy data and data col-
lection is time-consuming, especially for the newly built buildings
and buildings without IoT infrastructures.
6.1. Transfer learning

Transfer learning focuses on transferring the knowledge across
different domains, which is considered as a promising machine
learning methodology for solving the challenge above [116,117].
The core of transfer learning is to find the similarity between
source and target domains, and improve the model learning in
the target domain through using the knowledge learned from the
source domain. In building energy prediction, the source domains
refer to the buildings with abundant energy data. The target
domains refer to the buildings lacking of energy data, where can-
not well trained the ANNs. There exist a few studies showing the
beneficial of transfer learning [118–122]. However, the researches



Table 4
The advantages and disadvantages of the optimization algorithms for ANNs.

Categories Optimization
Algorithms

Inspiration Advantages Disadvantages

Evolutionary-based EA The natural mechanisms of the genetic
evolution of biological species.

Easy to implement; Suitable for
various solutions.

Computational time might be
long; Large amounts of
computing resources for difficult
problems.

DE The basic rules of genetics (mutation and
crossover strategies).

Simple and efficient heuristic for
global optimization; Few numbers of
control parameters

Parameter tuning mostly by trail-
and-error.

GA The natural process of fruition (selection,
mutation and crossover).

Global search; Without prior
knowledge (not depend on the initial
solution)

Slow convergence speed; Can be
complex when solving high
dimensional problems.

Physical or
mathematic-based

SCOA Simple sine and cosine mathematical
functions.

Minimal tuning parameters; High
optimization accuracy; Fast
convergence speed; Strong global
search ability.

Poor local search ability.

Human-based ICA Imperialistic competition and based on a
social policy of imperialism.

Find the global optimum solution;
Few parameters to adjust; Easy to
implement; Fast convergent.

Rapidly declining diversity;
Premature convergence.

TLBO The influence of a teacher on the learning
outcome of its students.

Balanced modeling accuracy and
network complexity;

Easy to be trapped locally; Poor
global search ability; Random
search.

Swarm
intelligence-based

PSO The flocking of birds where each particles
keeps personal and global best value and
changed the velocity with position in each
step.

Easy to implement; fewer tuning
parameters; Robust.

Might stuck in local minima;
Premature convergence for
certain complex problems; low
accuracy

ABC The foraging behavior of a swarm of bees,
which comprises employed bees, onlookers,
and scout bees.

Easy to implement; Robust against
initialization.

Might stuck in local optimum;
Poor exploitation characteristics;

CS The brood parasitic behavior of some cuckoo
species and levy flights of some birds and
flies.

High convergence speed; global
search ability.

Slow convergencein late
evolution; Easy to fall into local
minimum.

SOS The interactions of organisms in nature, and
involves mutualism, commensalism, and
parasitism.

Easy adjustability of the common
parameters; Simplicity of operation

Low optimization accuracy; Slow
convergence in late period.

FFOA The food finding behavior of the fruit fly. Low complexity, Fast computation
speed; Universal solving ability

Low optimization accuracy;
Might fall into local optimum.

BA The echolocation behavior of bats to search
directions and location.

Random optimization; New features
of echolocation.

Might fall into local optimum;
Slow solution.

DA The static and dynamic behavior of dragonfly
swarms

Converge towards the global
optimum.

Might fall into local optimum;
Slow convergence
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using transfer learning in building energy prediction are at the pri-
mary stage and most of them just utilized the fine-tune with the
deep learning models. One of the future directions is to explore
more possibility to implement transfer learning, such as
instance-based [123], feature-based [124] and relation-based
[125] transfer learning, which may need investigate the inner dis-
tribution and relations in building energy data.

6.2. Generative learning

Generative learning is another solution to solve the problem
of the lack of data. The representative of generative learning is
generative adversarial network (GAN), which was first proposed
in [126]. GAN consists of two networks, the generator and the
discriminator. The generator usually generates noise data
randomly and the discriminator judges whether the data is real
or fake, so GAN could learn the data distribution and generate
synthetic data with the same distribution. In building energy
prediction, different from transfer learning, GAN leverage knowl-
edge from the similar functional buildings to enhance data
variety of the target building [127,128,129], which essentially
is data augmentation. However, GAN has shown more applica-
tions in sequence prediction in [130,131,132]. Thus, one of the
future directions is explore more applications of GAN in building
energy prediction.
11
7. Conclusions

This paper presents a comprehensive literature survey on build-
ing energy prediction using ANNs in the past five years and a total
of 324 related studies were selected. This paper summarizes
twelve ANN architectures applied in those studies and introduced
them in detail. Then, the current state and research trend of build-
ing energy prediction using ANNs are provided. LSTM is the most
popular RNN and CNN-RNN is proven as an effective architecture,
both of which are recommended as the benchmark for following
researchers. Furthermore, the optimization algorithms are summa-
rized for prediction performance improvement, which is usually
applied to optimize three types of parameters of ANNs, including
weights and biases, input features, and hyperparameters. Online
learning should be implemented to adaptively optimize ANNs
when dealing with the building energy data stream in practice.
Moreover, there would exist a lack of energy data when buildings
are newly completed or renovated, transfer learning and genera-
tive learning could be considered promising solutions.

Overall, based on the literature survey and analysis, some of the
future research directions could be given below for the following
researchers (Not limited to these):

� Customization of ANN architectures for one specific building
energy prediction case;
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� Combination of ANNs and suitable optimization algorithms to
enhance building energy prediction performance;

� Implementation of online learning and efficient computing
techniques for building energy prediction in practice;

� Exploration of the transferability of the different situations of
buildings, such as different building functions and climate
zones;

� Exploration of the availability of generative learning in different
buildings.

CRediT authorship contribution statement

Chujie Lu: Conceptualization, Methodology, Formal analysis,
Investigation, Visualization, Data curation, Writing – original draft,
Writing – review & editing. Sihui Li: Writing – review & editing.
Zhengjun Lu: Writing – review & editing.

Declaration of Competing Interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgements

This work was supported by the Leading Talents of Guangdong
Province Program under Grant 2016LJ06D557. I would like to
appreciate particularly Prof. Jianguo Ma, my Ph.D. supervisor, for
the invaluable counsel and knowledgeable instruction in the
research methodology. I also would like to appreciate Prof. Qijun
Zhang at Carleton University, Canada, for his expert guidance in
artificial neural networks. A special thanks goes to Wenhao Sun
for all of his motivation.

References

[1] International Energy Agency, Tracking Buildings 2020, Paris, 2020.
[2] C.V. Gallagher, K. Bruton, K. Leahy, D.T.J. O’Sullivan, The suitability of machine

learning to minimise uncertainty in the measurement and verification of
energy savings, Energy Build. (2018), https://doi.org/10.1016/j.
enbuild.2017.10.041.

[3] R. Jia, B. Jin, M. Jin, Y. Zhou, I.C. Konstantakopoulos, H. Zou, J. Kim, D. Li, W. Gu,
R. Arghandeh, P. Nuzzo, S. Schiavon, A.L. Sangiovanni-Vincentelli, C.J. Spanos,
Design Automation for smart building systems, Proc. IEEE 106 (2018) 1680–
1699, https://doi.org/10.1109/JPROC.2018.2856932.

[4] B. Gunay, W. Shen, Connected and distributed sensing in buildings: improving
operation and maintenance, IEEE Syst. Man Cybern. Mag. 3 (2017) 27–34,
https://doi.org/10.1109/MSMC.2017.2702386.

[5] A. Kusiak, M. Li, Cooling output optimization of an air handling unit, Appl.
Energy (2010), https://doi.org/10.1016/j.apenergy.2009.06.010.

[6] N. Luo, T. Hong, H. Li, R. Jia, W. Weng, Data analytics and optimization of an
ice-based energy storage system for commercial buildings, Appl. Energy
(2017), https://doi.org/10.1016/j.apenergy.2017.07.048.

[7] S. Li, J. Peng, Y. Tan, T. Ma, X. Li, B. Hao, Study of the application potential of
photovoltaic direct-driven air conditioners in different climate zones, Energy
Build. 226 (2020), https://doi.org/10.1016/j.enbuild.2020.110387 110387.

[8] X. Liu, A. Heller, P.S. Nielsen, CITIESData: a smart city data management
framework, Knowl. Inf. Syst. (2017), https://doi.org/10.1007/s10115-017-
1051-3.

[9] L. Zhang, J. Wen, Y. Li, J. Chen, Y. Ye, Y. Fu, W. Livingood, A review of machine
learning in building load prediction, Appl. Energy 285 (2021), https://doi.org/
10.1016/j.apenergy.2021.116452 116452.

[10] Y. Sun, F. Haghighat, B.C.M. Fung, A review of the-state-of-the-art in data-
driven approaches for building energy prediction, Energy Build. 221 (2020),
https://doi.org/10.1016/j.enbuild.2020.110022 110022.

[11] S. Zhang, Y. Chen, W. Zhang, R. Feng, A novel ensemble deep learning model
with dynamic error correction and multi-objective ensemble pruning for
time series forecasting, Inf. Sci. 544 (2021) 427–445, https://doi.org/10.1016/
j.ins.2020.08.053.

[12] S. Panigrahi, H.S. Behera, A hybrid ETS–ANN model for time series forecasting,
Eng. Appl. Artif. Intell. 66 (2017) 49–59, https://doi.org/10.1016/j.
engappai.2017.07.007.

[13] S.D. Atalay, G. Calis, G. Kus, M. Kuru, Performance analyses of statistical
approaches for modeling electricity consumption of a commercial building in
12
France, Energy Build. 195 (2019) 82–92, https://doi.org/10.1016/j.
enbuild.2019.04.035.

[14] H. Shakouri, G.A. Kazemi, Selection of the best ARMAX model for forecasting
energy demand: case study of the residential and commercial sectors in Iran,
Energ. Effi. (2016), https://doi.org/10.1007/s12053-015-9368-9.

[15] W. Gao, J. Alsarraf, H. Moayedi, A. Shahsavar, H. Nguyen, Comprehensive
preference learning and feature validity for designing energy-efficient
residential buildings using machine learning paradigms, Appl. Soft Comput.
J. 84 (2019), https://doi.org/10.1016/j.asoc.2019.105748 105748.

[16] L. Alfieri, P. De Falco, Wavelet-based decompositions in probabilistic load
forecasting, IEEE Trans. Smart Grid 11 (2020) 1367–1376, https://doi.org/
10.1109/TSG.2019.2937072.

[17] A.T. Eseye, M. Lehtonen, Short-term forecasting of heat demand of buildings
for efficient and optimal energy management based on integrated machine
learning models, IEEE Trans. Ind. Inf. 16 (2020) 7743–7755, https://doi.org/
10.1109/TII.2020.2970165.

[18] M. Shao, X. Wang, Z. Bu, X. Chen, Y. Wang, Prediction of energy consumption
in hotel buildings via support vector machines, Sustainable Cities and Society.
57 (2020), https://doi.org/10.1016/j.scs.2020.102128 102128.

[19] M. Shen, Y. Lu, K.H. Wei, Q. Cui, Prediction of household electricity
consumption and effectiveness of concerted intervention strategies based
on occupant behaviour and personality traits, Renew. Sustain. Energy Rev.
127 (2020), https://doi.org/10.1016/j.rser.2020.109839 109839.

[20] L. Cai, J. Gu, Z. Jin, Two-Layer Transfer-Learning-Based Architecture for Short-
Term Load Forecasting, IEEE Trans. Ind. Inf. 16 (2020) 1722–1732, https://doi.
org/10.1109/TII.2019.2924326.

[21] E. Kamel, S. Sheikh, X. Huang, Data-driven predictive models for residential
building energy use based on the segregation of heating and cooling days,
Energy. 206 (2020), https://doi.org/10.1016/j.energy.2020.118045.

[22] S. Fathi, R. Srinivasan, A. Fenner, S. Fathi, Machine learning applications in
urban building energy performance forecasting: A systematic review, Renew.
Sustain. Energy Rev. 133 (2020), https://doi.org/10.1016/j.rser.2020.110287
110287.

[23] X.J. Luo, L.O. Oyedele, A.O. Ajayi, O.O. Akinade, Comparative study of machine
learning-based multi-objective prediction framework for multiple building
energy loads, Sustainable Cities and Society. 61 (2020), https://doi.org/
10.1016/j.scs.2020.102283 102283.

[24] A. Kusiak, M. Li, Z. Zhang, A data-driven approach for steam load prediction in
buildings, Appl. Energy 87 (2010) 925–933, https://doi.org/10.1016/j.
apenergy.2009.09.004.

[25] L.C. Jain, M. Seera, C.P. Lim, P. Balasubramaniam, A review of online learning
in supervised neural networks, Neural Comput. Appl. 25 (2014) 491–509,
https://doi.org/10.1007/s00521-013-1534-4.

[26] S. Suresh, N. Sundararajan, R. Savitha, Erratum: Supervised Learning with
Complex-valued Neural Networks, in (2013), https://doi.org/10.1007/978-3-
642-29491-4_9.

[27] Y. Himeur, A. Alsalemi, F. Bensaali, A. Amira, Building power consumption
datasets: Survey, taxonomy and future directions, Energy Build. 227 (2020),
https://doi.org/10.1016/j.enbuild.2020.110404 110404.

[28] C. Deb, F. Zhang, J. Yang, S. Eang, K. Wei, A review on time series forecasting
techniques for building energy consumption, Renew. Sustain. Energy Rev. 74
(2017) 902–924, https://doi.org/10.1016/j.rser.2017.02.085.

[29] Z. Wang, R.S. Srinivasan, A review of artificial intelligence based building
energy use prediction: Contrasting the capabilities of single and ensemble
prediction models, Renew. Sustain. Energy Rev. 75 (2017) 796–808, https://
doi.org/10.1016/j.rser.2016.10.079.

[30] K. Amasyali, N.M. El-gohary, A review of data-driven building energy
consumption prediction studies, Renew. Sustain. Energy Rev. 81 (2018)
1192–1205, https://doi.org/10.1016/j.rser.2017.04.095.

[31] M. Bourdeau, X. Qiang Zhai, E. Nefzaoui, X. Guo, P. Chatellier, Modeling and
forecasting building energy consumption: A review of data-driven
techniques, Sustainable Cities and Society. 48 (2019), https://doi.org/
10.1016/j.scs.2019.101533 101533.

[32] Y. Wei, X. Zhang, Y. Shi, L. Xia, S. Pan, J. Wu, M. Han, X. Zhao, A review of data-
driven approaches for prediction and classification of building energy
consumption, Renew. Sustain. Energy Rev. 82 (2018) 1027–1047, https://
doi.org/10.1016/j.rser.2017.09.108.

[33] Y. Wang, Q. Chen, T. Hong, C. Kang, Review of Smart Meter Data Analytics:
Applications, Methodologies, and Challenges, IEEE Trans. Smart Grid (2019),
https://doi.org/10.1109/TSG.2018.2818167.

[34] N.D. Roman, F. Bre, V.D. Fachinotti, R. Lamberts, Application and
characterization of metamodels based on artificial neural networks for
building performance simulation: A systematic review, Energy Build. 217
(2020), https://doi.org/10.1016/j.enbuild.2020.109972 109972.

[35] S.R. Mohandes, X. Zhang, A. Mahdiyar, A comprehensive review on the
application of artificial neural networks in building energy analysis,
Neurocomputing. 340 (2019) 55–75, https://doi.org/10.1016/j.
neucom.2019.02.040.

[36] Y. Wang, Q. Chen, T. Hong, C. Kang, Review of smart meter data analytics:
Applications, methodologies, and challenges, IEEE Trans. Smart Grid 10
(2019) 3125–3148.

[37] D. Moher, A. Liberati, J. Tetzlaff, D.G. Altman, D. Altman, G. Antes, D. Atkins, V.
Barbour, N. Barrowman, J.A. Berlin, J. Clark, M. Clarke, D. Cook, R. D’Amico, J.J.
Deeks, P.J. Devereaux, K. Dickersin, M. Egger, E. Ernst, P.C. Gøtzsche, J.
Grimshaw, G. Guyatt, J. Higgins, J.P.A. Ioannidis, J. Kleijnen, T. Lang, N.
Magrini, D. McNamee, L. Moja, C. Mulrow, M. Napoli, A. Oxman, B. Pham, D.

https://doi.org/10.1016/j.enbuild.2017.10.041
https://doi.org/10.1016/j.enbuild.2017.10.041
https://doi.org/10.1109/JPROC.2018.2856932
https://doi.org/10.1109/MSMC.2017.2702386
https://doi.org/10.1016/j.apenergy.2009.06.010
https://doi.org/10.1016/j.apenergy.2017.07.048
https://doi.org/10.1016/j.enbuild.2020.110387
https://doi.org/10.1007/s10115-017-1051-3
https://doi.org/10.1007/s10115-017-1051-3
https://doi.org/10.1016/j.apenergy.2021.116452
https://doi.org/10.1016/j.apenergy.2021.116452
https://doi.org/10.1016/j.enbuild.2020.110022
https://doi.org/10.1016/j.ins.2020.08.053
https://doi.org/10.1016/j.ins.2020.08.053
https://doi.org/10.1016/j.engappai.2017.07.007
https://doi.org/10.1016/j.engappai.2017.07.007
https://doi.org/10.1016/j.enbuild.2019.04.035
https://doi.org/10.1016/j.enbuild.2019.04.035
https://doi.org/10.1007/s12053-015-9368-9
https://doi.org/10.1016/j.asoc.2019.105748
https://doi.org/10.1109/TSG.2019.2937072
https://doi.org/10.1109/TSG.2019.2937072
https://doi.org/10.1109/TII.2020.2970165
https://doi.org/10.1109/TII.2020.2970165
https://doi.org/10.1016/j.scs.2020.102128
https://doi.org/10.1016/j.rser.2020.109839
https://doi.org/10.1109/TII.2019.2924326
https://doi.org/10.1109/TII.2019.2924326
https://doi.org/10.1016/j.energy.2020.118045
https://doi.org/10.1016/j.rser.2020.110287
https://doi.org/10.1016/j.scs.2020.102283
https://doi.org/10.1016/j.scs.2020.102283
https://doi.org/10.1016/j.apenergy.2009.09.004
https://doi.org/10.1016/j.apenergy.2009.09.004
https://doi.org/10.1007/s00521-013-1534-4
https://doi.org/10.1007/978-3-642-29491-4_9
https://doi.org/10.1007/978-3-642-29491-4_9
https://doi.org/10.1016/j.enbuild.2020.110404
https://doi.org/10.1016/j.rser.2017.02.085
https://doi.org/10.1016/j.rser.2016.10.079
https://doi.org/10.1016/j.rser.2016.10.079
https://doi.org/10.1016/j.rser.2017.04.095
https://doi.org/10.1016/j.scs.2019.101533
https://doi.org/10.1016/j.scs.2019.101533
https://doi.org/10.1016/j.rser.2017.09.108
https://doi.org/10.1016/j.rser.2017.09.108
https://doi.org/10.1109/TSG.2018.2818167
https://doi.org/10.1016/j.enbuild.2020.109972
https://doi.org/10.1016/j.neucom.2019.02.040
https://doi.org/10.1016/j.neucom.2019.02.040
http://refhub.elsevier.com/S0378-7788(21)01002-1/h0180
http://refhub.elsevier.com/S0378-7788(21)01002-1/h0180
http://refhub.elsevier.com/S0378-7788(21)01002-1/h0180


C. Lu, S. Li and Z. Lu Energy & Buildings 262 (2022) 111718
Rennie, M. Sampson, K.F. Schulz, P.G. Shekelle, D. Tovey, P. Tugwell, Preferred
reporting items for systematic reviews and meta-analyses: The PRISMA
statement, PLoS Med. (2009), https://doi.org/10.1371/journal.pmed.1000097.

[38] Y. Li, Z. Zhu, D. Kong, H. Han, Y. Zhao, Knowledge-Based Systems EA-LSTM :
Evolutionary attention-based LSTM for time series prediction, Knowl.-Based
Syst. 181 (2019), https://doi.org/10.1016/j.knosys.2019.05.028 104785.

[39] N. Somu, G.R. M R, K. Ramamritham, A hybrid model for building energy
consumption forecasting using long short term memory networks, Appl.
Energy. 261 (2020), https://doi.org/10.1016/j.apenergy.2019.114131.

[40] Y. Lecun, Y. Bengio, G. Hinton, Deep learning, Nature (2015), https://doi.org/
10.1038/nature14539.

[41] N. Papernot, P. McDaniel, Deep k-nearest neighbors: Towards confident,
interpretable and robust deep learning, ArXiv. (2018).

[42] H. Ismail Fawaz, G. Forestier, J. Weber, L. Idoumghar, P.A. Muller, Deep
learning for time series classification: a review, Data Min. Knowl. Disc. 33
(2019) 917–963, https://doi.org/10.1007/s10618-019-00619-1.

[43] S.M.C. Magalhães, V.M.S. Leal, I.M. Horta, Modelling the relationship
between heating energy use and indoor temperatures in residential
buildings through Artificial Neural Networks considering occupant
behavior, Energy Build. 151 (2017) 332–343, https://doi.org/10.1016/j.
enbuild.2017.06.076.

[44] J.S. Chou, D.K. Bui, Modeling heating and cooling loads by artificial
intelligence for energy-efficient building design, Energy Build. 82 (2014)
437–446, https://doi.org/10.1016/j.enbuild.2014.07.036.

[45] Y.A. LeCun, L. Bottou, G.B. Orr, K.-R. Müller, Efficient BackProp BT - Neural
Networks: Tricks of the Trade, in, Neural Networks: Tricks of the Trade
(2012).

[46] H. Moayedi, M. Mosallanezhad, A.S.A. Rashid, W.A.W. Jusoh, M.A. Muazu,
A systematic review and meta-analysis of artificial neural network
application in geotechnical engineering: theory and applications, Neural
Comput. Appl. 32 (2020) 495–518, https://doi.org/10.1007/s00521-019-
04109-9.

[47] M.W. Ahmad, M. Mourshed, Y. Rezgui, Trees vs Neurons: Comparison
between random forest and ANN for high-resolution prediction of building
energy consumption, Energy Build. 147 (2017) 77–89, https://doi.org/
10.1016/j.enbuild.2017.04.038.

[48] B. Gunay, W. Shen, G. Newsham, Inverse blackbox modeling of the heating
and cooling load in office buildings, Energy Build. 142 (2017) 200–210,
https://doi.org/10.1016/j.enbuild.2017.02.064.

[49] S. Seyedzadeh, F. Pour Rahimian, P. Rastogi, I. Glesk, Tuning machine learning
models for prediction of building energy loads, Sustain. Cities Soc. 47 (2019),
https://doi.org/10.1016/j.scs.2019.101484 101484.

[50] T. Jain, S.N. Singh, S.C. Srivastava, Fast static available transfer capability
determination using radial basis function neural network, Appl. Soft Comput.
J. (2011), https://doi.org/10.1016/j.asoc.2010.11.006.

[51] M.Y. Cheng, M.T. Cao, D.H. Tran, A hybrid fuzzy inference model based on
RBFNN and artificial bee colony for predicting the uplift capacity of suction
caissons, Autom. Constr. (2014), https://doi.org/10.1016/j.
autcon.2014.02.008.

[52] D.H. Tran, D.L. Luong, J.S. Chou, Nature-inspired metaheuristic ensemble
model for forecasting energy consumption in residential buildings, Energy.
191 (2020), https://doi.org/10.1016/j.energy.2019.116552 116552.

[53] G. Bin Huang, Q.Y. Zhu, C.K. Siew, Extreme learning machine: Theory and
applications, Neurocomputing. (2006), https://doi.org/10.1016/j.
neucom.2005.12.126.

[54] Y. Guo, J. Wang, H. Chen, G. Li, J. Liu, C. Xu, R. Huang, Y. Huang, Machine
learning-based thermal response time ahead energy demand prediction for
building heating systems, Appl. Energy 221 (2018) 16–27, https://doi.org/
10.1016/j.apenergy.2018.03.125.

[55] S. Sekhar Roy, R. Roy, V.E. Balas, Estimating heating load in buildings using
multivariate adaptive regression splines, extreme learning machine, a hybrid
model of MARS and ELM, Renew. Sustain. Energy Rev. 82 (2018) 4256–4268,
https://doi.org/10.1016/j.rser.2017.05.249.

[56] H. Song, A.K. Qin, F.D. Salim, Evolutionary model construction for electricity
consumption prediction, Neural Comput. Appl. 32 (2020) 12155–12172,
https://doi.org/10.1007/s00521-019-04310-w.

[57] S. Naji, A. Keivani, S. Shamshirband, U.J. Alengaram, M.Z. Jumaat, Z. Mansor,
M. Lee, Estimating building energy consumption using extreme learning
machine method, Energy. 97 (2016) 506–516, https://doi.org/10.1016/j.
energy.2015.11.037.

[58] S. Kumar, S.K. Pal, R.P. Singh, A novel method based on extreme learning
machine to predict heating and cooling load through design and structural
attributes, Energy Build. 176 (2018) 275–286, https://doi.org/10.1016/j.
enbuild.2018.06.056.

[59] S. Kumar, S.K. Pal, R. Singh, A novel hybrid model based on particle swarm
optimisation and extreme learning machine for short-term temperature
prediction using ambient sensors, Sustainable Cities and Society. 49 (2019),
https://doi.org/10.1016/j.scs.2019.101601 101601.

[60] M. Fayaz, D. Kim, A prediction methodology of energy consumption based on
deep extreme learning machine and comparative analysis in residential
buildings, Electronics (Switzerland). 7 (2018), https://doi.org/
10.3390/electronics7100222.

[61] J. Gu, J. Wang, C. Qi, C. Min, B. Sundén, Medium-term heat load prediction
for an existing residential building based on a wireless on-off control
system, Energy. 152 (2018) 709–718, https://doi.org/10.1016/j.
energy.2018.03.179.
13
[62] Z. Yuan, W. Wang, H. Wang, S. Mizzi, Combination of cuckoo search and
wavelet neural network for midterm building energy forecast, Energy. 202
(2020), https://doi.org/10.1016/j.energy.2020.117728 117728.

[63] T. Young, D. Hazarika, S. Poria, E. Cambria, Recent trends in deep learning
based natural language processing [Review Article], IEEE Comput. Intell. Mag.
(2018), https://doi.org/10.1109/MCI.2018.2840738.

[64] H. Cheng, L. Yang, Z. Liu, Survey on 3D hand gesture recognition, IEEE Trans.
Circuits Syst. Video Technol. (2016), https://doi.org/10.1109/
TCSVT.2015.2469551.

[65] L. Ruiz, M. Cuéllar, M. Calvo-Flores, M. Jiménez, An application of non-linear
autoregressive neural networks to predict energy consumption in public
buildings, Energies. 9 (2016) 684, https://doi.org/10.3390/en9090684.

[66] Y. Kim, H. Gu Son, S. Kim, Short term electricity load forecasting for
institutional buildings, Energy Rep. 5 (2019) 1270–1280, https://doi.org/
10.1016/j.egyr.2019.08.086.

[67] J. Kim, J. Moon, E. Hwang, P. Kang, Recurrent inception convolution neural
network for multi short-term load forecasting, Energy Build. 194 (2020) 328–
341, https://doi.org/10.1016/j.enbuild.2019.04.034.

[68] J.L. Elman, Finding structure in time, Cogn. Sci. (1990), https://doi.org/
10.1016/0364-0213(90)90002-E.

[69] Z. Ma, J. Xie, H. Li, Q. Sun, F. Wallin, Z. Si, J. Guo, Deep neural network-based
impacts analysis of multimodal factors on heat demand prediction, IEEE
Trans. Big Data 6 (2019) 594–605, https://doi.org/10.1109/
tbdata.2019.2907127.

[70] G. Bedi, G.K. Venayagamoorthy, R. Singh, Development of an IoT-driven
building environment for prediction of electric energy consumption, IEEE
Internet Things J. 7 (2020) 4912–4921, https://doi.org/10.1109/
JIOT.2020.2975847.

[71] L.G.B. Ruiz, R. Rueda, M.P. Cuéllar, M.C. Pegalajar, Energy consumption
forecasting based on Elman neural networks with evolutive optimization,
Expert Syst. Appl. 92 (2018) 380–389, https://doi.org/10.1016/j.
eswa.2017.09.059.

[72] G. Van Houdt, C. Mosquera, G. Nápoles, A review on the long short-term
memory model, Artif. Intell. Rev. (2020), https://doi.org/10.1007/s10462-
020-09838-1.

[73] Z. Wang, T. Hong, M.A. Piette, Predicting plug loads with occupant count data
through a deep learning approach, Energy. 181 (2019) 29–42, https://doi.org/
10.1016/j.energy.2019.05.138.

[74] Z. Wang, T. Hong, M.A. Piette, Building thermal load prediction through
shallow machine learning and deep learning, Appl. Energy 263 (2020),
https://doi.org/10.1016/j.apenergy.2020.114683 114683.

[75] A. Rahman, A.D. Smith, Predicting heating demand and sizing a
stratified thermal storage tank using deep learning algorithms, Appl.
Energy 228 (2018) 108–121, https://doi.org/10.1016/j.
apenergy.2018.06.064.

[76] C. Zhang, J. Li, Y. Zhao, T. Li, Q. Chen, X. Zhang, A hybrid deep learning-based
method for short-term building energy load prediction combined with an
interpretation process, Energy Build. 225 (2020), https://doi.org/10.1016/j.
enbuild.2020.110301 110301.

[77] L. Wen, K. Zhou, S. Yang, Load demand forecasting of residential buildings
using a deep learning model, Electr. Power Syst. Res. 179 (2020), https://doi.
org/10.1016/j.epsr.2019.106073 106073.

[78] R. Sendra-Arranz, A. Gutiérrez, A long short-term memory artificial neural
network to predict daily HVAC consumption in buildings, Energy Build. 216
(2020), https://doi.org/10.1016/j.enbuild.2020.109952 109952.

[79] C. Fan, J. Wang, W. Gang, S. Li, Assessment of deep recurrent neural network-
based strategies for short-term building energy predictions, Appl. Energy 236
(2019) 700–710, https://doi.org/10.1016/j.apenergy.2018.12.004.

[80] S. Ben Taieb, G. Bontempi, A.F. Atiya, A. Sorjamaa, A review and comparison of
strategies for multi-step ahead time series forecasting based on the NN5
forecasting competition, Expert Syst. Appl. (2012), https://doi.org/10.1016/j.
eswa.2012.01.039.

[81] E. Skomski, J.Y. Lee, W. Kim, V. Chandan, S. Katipamula, B. Hutchinson,
Sequence-to-sequence neural networks for short-term electrical load
forecasting in commercial office buildings, Energy Build. 226 (2020),
https://doi.org/10.1016/j.enbuild.2020.110350.

[82] L. Sehovac, K. Grolinger, Deep Learning for Load Forecasting: Sequence to
Sequence Recurrent Neural Networks with Attention, IEEE Access 8 (2020)
36411–36426, https://doi.org/10.1109/ACCESS.2020.2975738.

[83] D. Bahdanau, K. Cho, Y. Bengio, Neural Machine Translation by Jointly
Learning to Align and Translate, (2014). http://arxiv.org/abs/1409.0473.

[84] M.-T. Luong, H. Pham, C.D. Manning, Effective Approaches to Attention-based
Neural Machine Translation, n.d.

[85] C. Gallicchio, A. Micheli, L. Pedrelli, Deep reservoir computing: A critical
experimental analysis, Neurocomputing. 268 (2017) 87–99, https://doi.org/
10.1016/j.neucom.2016.12.089.

[86] C. Gallicchio, A. Micheli, L. Pedrelli, Design of deep echo state networks,
Neural Networks. 108 (2018) 33–47, https://doi.org/10.1016/j.
neunet.2018.08.002.

[87] G. Shi, D. Liu, Q. Wei, Energy consumption prediction of office buildings based
on echo state networks, Neurocomputing. 216 (2016) 478–488, https://doi.
org/10.1016/j.neucom.2016.08.004.

[88] M. Mansoor, F. Grimaccia, S. Leva, M. Mussetta, Comparison of echo state
network and feed-forward neural networks in electrical load forecasting for
demand response programs, Math. Comput. Simul (2020), https://doi.org/
10.1016/j.matcom.2020.07.011.

https://doi.org/10.1371/journal.pmed.1000097
https://doi.org/10.1016/j.knosys.2019.05.028
https://doi.org/10.1016/j.apenergy.2019.114131
https://doi.org/10.1038/nature14539
https://doi.org/10.1038/nature14539
http://refhub.elsevier.com/S0378-7788(21)01002-1/h0205
http://refhub.elsevier.com/S0378-7788(21)01002-1/h0205
https://doi.org/10.1007/s10618-019-00619-1
https://doi.org/10.1016/j.enbuild.2017.06.076
https://doi.org/10.1016/j.enbuild.2017.06.076
https://doi.org/10.1016/j.enbuild.2014.07.036
http://refhub.elsevier.com/S0378-7788(21)01002-1/h0225
http://refhub.elsevier.com/S0378-7788(21)01002-1/h0225
http://refhub.elsevier.com/S0378-7788(21)01002-1/h0225
https://doi.org/10.1007/s00521-019-04109-9
https://doi.org/10.1007/s00521-019-04109-9
https://doi.org/10.1016/j.enbuild.2017.04.038
https://doi.org/10.1016/j.enbuild.2017.04.038
https://doi.org/10.1016/j.enbuild.2017.02.064
https://doi.org/10.1016/j.scs.2019.101484
https://doi.org/10.1016/j.asoc.2010.11.006
https://doi.org/10.1016/j.autcon.2014.02.008
https://doi.org/10.1016/j.autcon.2014.02.008
https://doi.org/10.1016/j.energy.2019.116552
https://doi.org/10.1016/j.neucom.2005.12.126
https://doi.org/10.1016/j.neucom.2005.12.126
https://doi.org/10.1016/j.apenergy.2018.03.125
https://doi.org/10.1016/j.apenergy.2018.03.125
https://doi.org/10.1016/j.rser.2017.05.249
https://doi.org/10.1007/s00521-019-04310-w
https://doi.org/10.1016/j.energy.2015.11.037
https://doi.org/10.1016/j.energy.2015.11.037
https://doi.org/10.1016/j.enbuild.2018.06.056
https://doi.org/10.1016/j.enbuild.2018.06.056
https://doi.org/10.1016/j.scs.2019.101601
https://doi.org/10.3390/electronics7100222
https://doi.org/10.3390/electronics7100222
https://doi.org/10.1016/j.energy.2018.03.179
https://doi.org/10.1016/j.energy.2018.03.179
https://doi.org/10.1016/j.energy.2020.117728
https://doi.org/10.1109/MCI.2018.2840738
https://doi.org/10.1109/TCSVT.2015.2469551
https://doi.org/10.1109/TCSVT.2015.2469551
https://doi.org/10.3390/en9090684
https://doi.org/10.1016/j.egyr.2019.08.086
https://doi.org/10.1016/j.egyr.2019.08.086
https://doi.org/10.1016/j.enbuild.2019.04.034
https://doi.org/10.1016/0364-0213(90)90002-E
https://doi.org/10.1016/0364-0213(90)90002-E
https://doi.org/10.1109/tbdata.2019.2907127
https://doi.org/10.1109/tbdata.2019.2907127
https://doi.org/10.1109/JIOT.2020.2975847
https://doi.org/10.1109/JIOT.2020.2975847
https://doi.org/10.1016/j.eswa.2017.09.059
https://doi.org/10.1016/j.eswa.2017.09.059
https://doi.org/10.1007/s10462-020-09838-1
https://doi.org/10.1007/s10462-020-09838-1
https://doi.org/10.1016/j.energy.2019.05.138
https://doi.org/10.1016/j.energy.2019.05.138
https://doi.org/10.1016/j.apenergy.2020.114683
https://doi.org/10.1016/j.apenergy.2018.06.064
https://doi.org/10.1016/j.apenergy.2018.06.064
https://doi.org/10.1016/j.enbuild.2020.110301
https://doi.org/10.1016/j.enbuild.2020.110301
https://doi.org/10.1016/j.epsr.2019.106073
https://doi.org/10.1016/j.epsr.2019.106073
https://doi.org/10.1016/j.enbuild.2020.109952
https://doi.org/10.1016/j.apenergy.2018.12.004
https://doi.org/10.1016/j.eswa.2012.01.039
https://doi.org/10.1016/j.eswa.2012.01.039
https://doi.org/10.1016/j.enbuild.2020.110350
https://doi.org/10.1109/ACCESS.2020.2975738
https://doi.org/10.1016/j.neucom.2016.12.089
https://doi.org/10.1016/j.neucom.2016.12.089
https://doi.org/10.1016/j.neunet.2018.08.002
https://doi.org/10.1016/j.neunet.2018.08.002
https://doi.org/10.1016/j.neucom.2016.08.004
https://doi.org/10.1016/j.neucom.2016.08.004
https://doi.org/10.1016/j.matcom.2020.07.011
https://doi.org/10.1016/j.matcom.2020.07.011


C. Lu, S. Li and Z. Lu Energy & Buildings 262 (2022) 111718
[89] L. Wang, H. Hu, X.Y. Ai, H. Liu, Effective electricity energy consumption
forecasting using echo state network improved by differential evolution
algorithm, Energy. 153 (2018) 801–815, https://doi.org/10.1016/j.
energy.2018.04.078.

[90] H. Hu, L. Wang, S.X. Lv, Forecasting energy consumption and wind power
generation using deep echo state network, Renewable Energy 154 (2020)
598–613, https://doi.org/10.1016/j.renene.2020.03.042.

[91] H. Hu, L. Wang, L. Peng, Y.R. Zeng, Effective energy consumption forecasting
using enhanced bagged echo state network, Energy. 193 (2020), https://doi.
org/10.1016/j.energy.2019.116778 116778.

[92] G. Fud, Deep belief network based ensemble approach for cooling load
forecasting of air-conditioning system, Energy. 148 (2018) 269–282, https://
doi.org/10.1016/j.energy.2018.01.180.

[93] G. Hafeez, K.S. Alimgeer, I. Khan, Electric load forecasting based on deep
learning and optimized by heuristic algorithm in smart grid, Appl. Energy 269
(2020), https://doi.org/10.1016/j.apenergy.2020.114915 114915.

[94] J. Gamboa, Deep Learning for Time-Series Analysis, ArXiv. (2017).
[95] H.J. Sadaei, P.C. de Lima e Silva, F.G. Guimarães, M.H. Lee, Short-term load

forecasting by using a combined method of convolutional neural networks
and fuzzy time series, Energy 175 (2019) 365–377, https://doi.org/10.1016/j.
energy.2019.03.081.

[96] M. Cai, M. Pipattanasomporn, S. Rahman, Day-ahead building-level load
forecasts using deep learning vs. traditional time-series techniques, Appl.
Energy 236 (2019) 1078–1088, https://doi.org/10.1016/j.
apenergy.2018.12.042.

[97] T.Y. Kim, S.B. Cho, Predicting residential energy consumption using CNN-
LSTM neural networks, Energy. 182 (2019) 72–81, https://doi.org/10.1016/j.
energy.2019.05.230.

[98] M. Sajjad, Z.A. Khan, A. Ullah, T. Hussain, W. Ullah, M.Y. Lee, S.W. Baik, A Novel
CNN-GRU-Based Hybrid Approach for Short-Term Residential Load
Forecasting, IEEE Access 8 (2020) 143759–143768, https://doi.org/10.1109/
ACCESS.2020.3009537.

[99] J. Donahue, L.A. Hendricks, M. Rohrbach, S. Venugopalan, S. Guadarrama, K.
Saenko, T. Darrell, Long-Term Recurrent Convolutional Networks for Visual
Recognition and Description, IEEE Trans. Pattern Anal. Mach. Intell. 39 (2017)
677–691, https://doi.org/10.1109/TPAMI.2016.2599174.

[100] X. Shi, Z. Chen, H. Wang, D.Y. Yeung, W.K. Wong, W.C. Woo, Convolutional
LSTM network: A machine learning approach for precipitation nowcasting,
Adv. Neural Inform. Process. Syst. 2015 (2015) 802–810.

[101] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V.
Vanhoucke, A. Rabinovich, Going deeper with convolutions, Proceedings of
the IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, 2015, 10.1109/CVPR.2015.7298594.

[102] L.T. Le, H. Nguyen, J. Dou, J. Zhou, A comparative study of PSO-ANN, GA-ANN,
ICA-ANN, and ABC-ANN in estimating the heating load of buildings’ energy
efficiency for smart city planning, Appl. Sci. (Switzerland). (2019), https://doi.
org/10.3390/app9132630.

[103] S. Bouktif, A. Fiaz, A. Ouni, M.A. Serhani, Multi-sequence LSTM-RNN deep
learning and metaheuristics for electric load forecasting, Energies (2020),
https://doi.org/10.3390/en13020391.

[104] H. Su, E. Zio, J. Zhang, M. Xu, X. Li, Z. Zhang, A hybrid hourly natural gas
demand forecasting method based on the integration of wavelet transform
and enhanced Deep-RNN model, Energy. (2019), https://doi.org/10.1016/j.
energy.2019.04.167.

[105] M. Ilbeigi, M. Ghomeishi, A. Dehghanbanadaki, Prediction and optimization of
energy consumption in an office building using artificial neural network and
a genetic algorithm, Sustain. Cities Soc. (2020), https://doi.org/10.1016/j.
scs.2020.102325.

[106] X.J. Luo, L.O. Oyedele, A.O. Ajayi, O.O. Akinade, H.A. Owolabi, A. Ahmed,
Feature extraction and genetic algorithm enhanced adaptive deep neural
network for energy consumption prediction in buildings, Renew. Sustain.
Energy Rev. (2020), https://doi.org/10.1016/j.rser.2020.109980.

[107] G. Zhou, H. Moayedi, M. Bahiraei, Z. Lyu, Employing artificial bee colony and
particle swarm techniques for optimizing a neural network in prediction of
heating and cooling loads of residential buildings, J. Cleaner Prod. (2020),
https://doi.org/10.1016/j.jclepro.2020.120082.

[108] J.R.S. Iruela, L.G.B. Ruiz, M.C. Pegalajar, M.I. Capel, A parallel solution with
GPU technology to predict energy consumption in spatially distributed
buildings using evolutionary optimization and artificial neural networks,
Energy Convers. Manage. (2020), https://doi.org/10.1016/j.
enconman.2020.112535.

[109] G. Zhou, H. Moayedi, L.K. Foong, Teaching–learning-based metaheuristic
scheme for modifying neural computing in appraising energy performance of
building, Eng. Comput. (2020), https://doi.org/10.1007/s00366-020-00981-5.

[110] A.S. Shah, H. Nasir, M. Fayaz, A. Lajis, I. Ullah, A. Shah, Dynamic user
preference parameters selection and energy consumption optimization for
smart homes using deep extreme learning machine and bat algorithm, IEEE
Access (2020), https://doi.org/10.1109/access.2020.3037081.

[111] J. Wang, W. Yang, P. Du, Y. Li, Research and application of a hybrid forecasting
framework based on multi-objective optimization for electrical power
system, Energy. (2018), https://doi.org/10.1016/j.energy.2018.01.112.
14
[112] L. Wang, S.X. Lv, Y.R. Zeng, Effective sparse adaboost method with ESN and
FOA for industrial electricity consumption forecasting in China, Energy.
(2018), https://doi.org/10.1016/j.energy.2018.04.175.

[114] A. Naik, S.C. Satapathy, A. Abraham, Modified Social Group Optimization—a
meta-heuristic algorithm to solve short-term hydrothermal scheduling, Appl.
Soft Comput. J. 95 (2020), https://doi.org/10.1016/j.asoc.2020.106524.

[115] P. Lu, L. Ye, Y. Zhao, B. Dai, M. Pei, Y. Tang, Review of meta-heuristic
algorithms for wind power prediction: Methodologies, applications and
challenges, Appl. Energy 301 (2021), https://doi.org/10.1016/j.
apenergy.2021.117446.

[116] R.P. Parouha, P. Verma, State-of-the-art reviews of meta-heuristic algorithms
with their novel proposal for unconstrained optimization and applications,
Arch. Comput. Methods Eng. 28 (2021) 4049–4115, https://doi.org/10.1007/
s11831-021-09532-7.

[117] M.N. Fekri, H. Patel, K. Grolinger, V. Sharma, Deep learning for load
forecasting with smart meter data: Online Adaptive Recurrent Neural
Network, Appl. Energy 282 (2021), https://doi.org/10.1016/j.
apenergy.2020.116177.

[118] S.J. Pan, Q. Yang, A survey on transfer learning, IEEE Trans. Knowl. Data Eng.
(2010), https://doi.org/10.1109/TKDE.2009.191.

[119] F. Zhuang, Z. Qi, K. Duan, D. Xi, Y. Zhu, H. Zhu, H. Xiong, Q. He, A
comprehensive survey on transfer learning, Proc. IEEE (2021), https://doi.org/
10.1109/JPROC.2020.3004555.

[120] X. Fang, G. Gong, G. Li, L. Chun, W. Li, P. Peng, A hybrid deep transfer learning
strategy for short term cross-building energy prediction, Energy 215 (2021),
https://doi.org/10.1016/j.energy.2020.119208 119208.

[121] Z. Jiang, Y.M. Lee, Deep Transfer Learning for Thermal Dynamics Modeling in
Smart Buildings, in: Proceedings - 2019 IEEE International Conference on Big
Data, Big Data 2019, 2019, pp. 2033–2037, https://doi.org/10.1109/
BigData47090.2019.9006306.

[122] M. Ribeiro, K. Grolinger, H.F. ElYamany, W.A. Higashino, M.A.M. Capretz,
Transfer learning with seasonal and trend adjustment for cross-building
energy forecasting, Energy Build. 165 (2018) 352–363, https://doi.org/
10.1016/j.enbuild.2018.01.034.

[123] C. Fan, Y. Sun, F. Xiao, J. Ma, D. Lee, J. Wang, Y.C. Tseng, Statistical
investigations of transfer learning-based methodology for short-term
building energy predictions, Appl. Energy 262 (2020), https://doi.org/
10.1016/j.apenergy.2020.114499 114499.

[124] Y. Gao, Y. Ruan, C. Fang, S. Yin, Deep learning and transfer learning models of
energy consumption forecasting for a building with poor information data,
Energy Build. 223 (2020), https://doi.org/10.1016/j.enbuild.2020.110156
110156.

[125] W. Dai, Q. Yang, G.R. Xue, Y. Yu, Boosting for transfer learning, ACM Internat.
Conf. Proc. Series (2007), https://doi.org/10.1145/1273496.1273521.

[126] K.M. Borgwardt, A. Gretton, M.J. Rasch, H.P. Kriegel, B. Schölkopf, A.J. Smola,
Integrating structured biological data by Kernel Maximum Mean
Discrepancy, Bioinformatics (2006), https://doi.org/10.1093/bioinformatics/
btl242.

[127] J. Davis, P. Domingos, Deep transfer via second-order Markov logic, in:
Proceedings of the 26th International Conference On Machine Learning 2009,
2009, pp. 217–224.

[128] I.J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A.
Courville, Y. Bengio, Generative adversarial nets, Adv. Neural Inform. Process.
Syst. (2014), https://doi.org/10.3156/jsoft.29.5_177_2.

[129] Y. Pang, X. Zhou, D. Xu, Z. Tan, M. Zhang, N. Guo, Y. Tian, Generative
adversarial learning based commercial building electricity time series
prediction, in: Proceedings - International Conference on Tools with
Artificial Intelligence, ICTAI. 2019-November, 2019, pp. 1800–1804,
10.1109/ICTAI.2019.00271.

[130] Z. Wang, T. Hong, Generating realistic building electrical load profiles
through the Generative Adversarial Network (GAN), Energy Build. 224
(2020), https://doi.org/10.1016/j.enbuild.2020.110299 110299.

[131] M.N. Fekri, A.M. Ghosh, K. Grolinger, Generating energy data for machine
learning with recurrent generative adversarial networks, Energies. 13 (2019),
https://doi.org/10.3390/en13010130.

[132] Y.H. Kwon, M.G. Park, Predicting future frames using retrospective cycle gan,
in: Proceedings of the IEEE Computer Society Conference on Computer Vision
and Pattern Recognition 2019-June, 2019, pp. 1811–1820, https://doi.org/
10.1109/CVPR.2019.00191.

Further reading

[113] I. Fister, X.S. Yang, J. Brest, D. Fister, A brief review of nature-inspired
algorithms for optimization, Elektrotehniski Vestnik/Electrotechnical
Review (2013).

[133] A. Koochali, P. Schichtel, A. Dengel, S. Ahmed, Probabilistic forecasting of
sensory data with generative adversarial networks - ForGAN, IEEE Access
(2019), https://doi.org/10.1109/ACCESS.2019.2915544.

[134] A. Gupta, J. Johnson, L. Fei-Fei, S. Savarese, A. Alahi, Social GAN: Socially
acceptable trajectories with generative adversarial networks, ArXiv (2018).

https://doi.org/10.1016/j.energy.2018.04.078
https://doi.org/10.1016/j.energy.2018.04.078
https://doi.org/10.1016/j.renene.2020.03.042
https://doi.org/10.1016/j.energy.2019.116778
https://doi.org/10.1016/j.energy.2019.116778
https://doi.org/10.1016/j.energy.2018.01.180
https://doi.org/10.1016/j.energy.2018.01.180
https://doi.org/10.1016/j.apenergy.2020.114915
http://refhub.elsevier.com/S0378-7788(21)01002-1/h0470
https://doi.org/10.1016/j.energy.2019.03.081
https://doi.org/10.1016/j.energy.2019.03.081
https://doi.org/10.1016/j.apenergy.2018.12.042
https://doi.org/10.1016/j.apenergy.2018.12.042
https://doi.org/10.1016/j.energy.2019.05.230
https://doi.org/10.1016/j.energy.2019.05.230
https://doi.org/10.1109/ACCESS.2020.3009537
https://doi.org/10.1109/ACCESS.2020.3009537
https://doi.org/10.1109/TPAMI.2016.2599174
http://refhub.elsevier.com/S0378-7788(21)01002-1/h0500
http://refhub.elsevier.com/S0378-7788(21)01002-1/h0500
http://refhub.elsevier.com/S0378-7788(21)01002-1/h0500
http://refhub.elsevier.com/S0378-7788(21)01002-1/h0505
http://refhub.elsevier.com/S0378-7788(21)01002-1/h0505
http://refhub.elsevier.com/S0378-7788(21)01002-1/h0505
http://refhub.elsevier.com/S0378-7788(21)01002-1/h0505
http://refhub.elsevier.com/S0378-7788(21)01002-1/h0505
https://doi.org/10.3390/app9132630
https://doi.org/10.3390/app9132630
https://doi.org/10.3390/en13020391
https://doi.org/10.1016/j.energy.2019.04.167
https://doi.org/10.1016/j.energy.2019.04.167
https://doi.org/10.1016/j.scs.2020.102325
https://doi.org/10.1016/j.scs.2020.102325
https://doi.org/10.1016/j.rser.2020.109980
https://doi.org/10.1016/j.jclepro.2020.120082
https://doi.org/10.1016/j.enconman.2020.112535
https://doi.org/10.1016/j.enconman.2020.112535
https://doi.org/10.1007/s00366-020-00981-5
https://doi.org/10.1109/access.2020.3037081
https://doi.org/10.1016/j.energy.2018.01.112
https://doi.org/10.1016/j.energy.2018.04.175
https://doi.org/10.1016/j.asoc.2020.106524
https://doi.org/10.1016/j.apenergy.2021.117446
https://doi.org/10.1016/j.apenergy.2021.117446
https://doi.org/10.1007/s11831-021-09532-7
https://doi.org/10.1007/s11831-021-09532-7
https://doi.org/10.1016/j.apenergy.2020.116177
https://doi.org/10.1016/j.apenergy.2020.116177
https://doi.org/10.1109/TKDE.2009.191
https://doi.org/10.1109/JPROC.2020.3004555
https://doi.org/10.1109/JPROC.2020.3004555
https://doi.org/10.1016/j.energy.2020.119208
http://refhub.elsevier.com/S0378-7788(21)01002-1/h0605
http://refhub.elsevier.com/S0378-7788(21)01002-1/h0605
http://refhub.elsevier.com/S0378-7788(21)01002-1/h0605
http://refhub.elsevier.com/S0378-7788(21)01002-1/h0605
http://refhub.elsevier.com/S0378-7788(21)01002-1/h0605
https://doi.org/10.1016/j.enbuild.2018.01.034
https://doi.org/10.1016/j.enbuild.2018.01.034
https://doi.org/10.1016/j.apenergy.2020.114499
https://doi.org/10.1016/j.apenergy.2020.114499
https://doi.org/10.1016/j.enbuild.2020.110156
https://doi.org/10.1145/1273496.1273521
https://doi.org/10.1093/bioinformatics/btl242
https://doi.org/10.1093/bioinformatics/btl242
http://refhub.elsevier.com/S0378-7788(21)01002-1/h0635
http://refhub.elsevier.com/S0378-7788(21)01002-1/h0635
http://refhub.elsevier.com/S0378-7788(21)01002-1/h0635
http://refhub.elsevier.com/S0378-7788(21)01002-1/h0635
https://doi.org/10.3156/jsoft.29.5_177_2
http://refhub.elsevier.com/S0378-7788(21)01002-1/h0645
http://refhub.elsevier.com/S0378-7788(21)01002-1/h0645
http://refhub.elsevier.com/S0378-7788(21)01002-1/h0645
http://refhub.elsevier.com/S0378-7788(21)01002-1/h0645
http://refhub.elsevier.com/S0378-7788(21)01002-1/h0645
http://refhub.elsevier.com/S0378-7788(21)01002-1/h0645
https://doi.org/10.1016/j.enbuild.2020.110299
https://doi.org/10.3390/en13010130
http://refhub.elsevier.com/S0378-7788(21)01002-1/h0660
http://refhub.elsevier.com/S0378-7788(21)01002-1/h0660
http://refhub.elsevier.com/S0378-7788(21)01002-1/h0660
http://refhub.elsevier.com/S0378-7788(21)01002-1/h0660
http://refhub.elsevier.com/S0378-7788(21)01002-1/h0660
http://refhub.elsevier.com/S0378-7788(21)01002-1/h0565
http://refhub.elsevier.com/S0378-7788(21)01002-1/h0565
http://refhub.elsevier.com/S0378-7788(21)01002-1/h0565
http://refhub.elsevier.com/S0378-7788(21)01002-1/h0565
http://refhub.elsevier.com/S0378-7788(21)01002-1/h0565
https://doi.org/10.1109/ACCESS.2019.2915544
http://refhub.elsevier.com/S0378-7788(21)01002-1/h0670
http://refhub.elsevier.com/S0378-7788(21)01002-1/h0670
http://refhub.elsevier.com/S0378-7788(21)01002-1/h0670

	Building energy prediction using artificial neural networks: A literature survey
	1 Introduction
	1.1 Relevant review articles
	1.2 Objectives and review structure

	2 Bibliometric analysis in building energy prediction using ANNs
	3 ANN architectures in building energy prediction
	3.1 Theoretical background
	3.2 Feed forward neural networks
	3.3 Recurrent neural networks
	3.4 Convolutional neural networks

	4 How to choose suitable ANN architectures for building energy prediction
	5 How to improve performance of ANNs for building energy prediction
	6 How to deal with the lack of energy training data
	6.1 Transfer learning
	6.2 Generative learning

	7 Conclusions
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgements
	References
	Further reading


